@CERTIK

Alpha Sec. - audit

CertiK Assessed on Dec 19th, 2025

@EEF\‘TIK

SUMMARY | ALPHASEC. - AUDIT

CertiK Assessed on Dec 19th, 2025
Alpha Sec. - audit

The security assessment was prepared by CertiK.

Executive Summary
TYPES ECOSYSTEM METHODS
DEX, Layer 2 EVM Compatible Manual Review, Static Analysis
LANGUAGE TIMELINE
Go, Solidity Preliminary comments published on 11/14/2025
Final report published on 12/20/2025
Vulnerability Summary

67

54 13 0

Total Findings Resolved Partially Resolved Acknowledged Declined

M 0 Centralization

M 0 Critical

M 7 Major

[13 Medium

Minor

M 12 Informational

Centralization findings highlight privileged roles &
functions and their capabilities, or instances where the

project takes custody of users’ assets.

Critical risks are those that impact the safe functioning
of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

Major risks may include logical errors that, under

7 Resolved specific circumstances, could result in fund losses or
L] ;

loss of project control.
12 Resolved, 1 Acknowledged Medium risks may not pose a direct risk to users’ funds,
COEEEEEss—— but they can affect the overall functioning of a platform.

Minor risks can be any of the above, but on a smaller

28 Resolved, 7 Acknowledged scale. They generally do not compromise the overall
integrity of the project, but they may be less efficient

than other solutions.

Informational errors are often recommendations to

7 Resolved. 5 Acknowledged improve the style of the code or certain operations to
O fall within industry best practices. They usually do not
affect the overall functioning of the code.

@EER‘TIK

TABLE OF CONTENTS | ALPHA SEC. - AUDIT

I Summary

Executive Summary

Vulnerability Summary

Codebase
Audit Scope

Approach & Methods

I Overview
Introduction

Architecture & Key Innovations

Architectural Overview

Key Innovations

Core Components & Workflows

Account Model & State Extensions

Command-Based Transaction System

Asset Bridging_(ArbTokenlssuer)

Core Orderbook Workflow

Order Lifecycle & Processing_Flow

Order States
Regular Order Flow

Conditional Order Flow

Persistence & State Recovery

Summary
Reference
I Findings

ASA-125 : Missing_ Ownership Validation In Order Cancellation

ASA-68 : Unrestricted “Session.Metadata” Field Enables Potential DoS Attack

ASA-69 : TPSL Lock Logic May Fail Due To Premature Locking Of Unsettled Assets

ASA-70 : "GetOrdersSorted()” Corrupts Original Queue

ASA-71 : Market Order Locking Allows DoS Via Insufficient Balance

ASA-72 : Unbounded Wallet Sessions Enable Denial Of Service

ASA-73 : Missing_Handling Of "FailedOrders” In "ModifyOrder()"

TABLE OF CONTENTS | ALPHASEC. - AUDIT

@EER‘TIK

ASA-74 .

TABLE OF CONTENTS | ALPHASEC. - AUDIT

Balance Manager Records Locks Even When State Locking_Fails

ASA-75 .

Inconsistent Order State Due To Incorrect Lock Amount Update

ASA-76 :

Improper Locking_ Order (Race Condition)_In "Lock().

ASA-77 .

Potential Transaction Bloat Attack Due To Trailing Bytes

ASA-78

: Ambiguous Quantity Semantics Between Quote And Base Tokens

ASA-79

: Lot-Size/Dust Validation Bypass For SELL Market Orders In Quote Mode After Lock Limiting

ASA-80:

Incorrect Unlock Identifier In “createTPSLOrders™ May Cause Stuck TPSL Locks And Balance Inconsistency

ASA-81 :

Discussion On Gas-Free Dex Commands Design That Enables Multi-Layer DoS

ASA-82 :

Both TP Order And SL Orders Could Exist In Orderbook In Some Edge Cases

ASA-83 :

TriggeredQueue Not Restored From Engine Snapshot

ASA-84 .

Incorrect Value Copy During Aggregation Leads To Erroneous Market Depth

ASA-85 :

Non-Atomic TPSL Creation Can Lead To Orphaned Orders And Inconsistent State

ASA-86 :

Funds Unlocked Before Order Removal In “handleCancelAllRequest()”

ASA-100

: Potential Exploitation Of SL Market Orders Via Extreme Price Updates

ASA-101 :

Unsynchronized And Unvalidated Metadata Persistence In “Stop()._Causes WAL Inconsistency

ASA-102 :

Potential Overflow Leads To Panic With "MustFromBig()

ASA-103 :

Insufficient Constraint On Data Size

ASA-104 :

Expired Session Wallet Does Not Falil

ASA-105 :

Missing_Nonzero Check Of Input “data”

ASA-106

: Dispatcher Panics On Shutdown If New Requests Arrive After “Stop().

ASA-107

: Missing_LockedAmount™ In Deep Copy Method "Copy()._Of "Order’

ASA-108 :

“validate()._Misses Validation Of "OrderMode”

ASA-109 :

Missing_Validation Of Existing Order In “validate(). Of ModifyContext

ASA-110:

Incorrect Order Of Return Values In "GetOrderbookSnapshot()

ASA-111:

Non-Determinism Due To Map lteration

ASA-112:

Time-Nonce Validation Could Possibly Be Bypassed In “timeNonceDriftAcceptable().

ASA-113

: Missing_Validation Of Existing_Order In “validate(). Of "CancelAllContext”

ASA-114

: Missing_Deep Copy Of Order Information In "CreateModifiedOrder()

ASA-115

: Async Delta Loss Due To Premature Dirty-Flag Reset

ASA-126 :

Non-Atomic Lock Consumption Can Leave Balances Partially Consumed On Failure

ASA-127 :

Discussion On Logged Settlement And OCQO Failures Without Proper Handling

ASA-128 :

Missing Comparison Between “SLLimit" And "SLTrigger’

ASA-129 :

Stale Depth From In-Place Order Mutation In "UpdateOrder()”

ASA-130:

TPSL Creation Failure Leaves Stale Pre-Registered TP/SL Routes

@EER‘TIK

TABLE OF CONTENTS | ALPHA SEC

ASA-131 : Market Orders Accept Negative Prices

ASA-87 .

Order Lock Can Be Removed When “oldOrderlD” Equals "NewOrder|D"

ASA-88 .

Missing_Nil Pointer Check In "Copy()" Of "ValueTransferContext

ASA-89 :

Unsafe Internal Pointer Exposure Via "GetBuyOrders()_

ASA-90 :

Order Quantity And Price Validation Uses “IsZero()" Instead Of "Sign()__To Ensure Strict Positivity,

ASA-91

: Reversed Conditional In "TokenTransferContext.copy()_

ASA-92 .

Missing Copy Of “LockedBalance™ In "Copy()._Of "StateAccount”

ASA-93 :

Missing_"LockedBalance In "Account’

ASA-94 .

Non-Deterministic "MarshalJSON()" Of "Balances”

ASA-95 .

Mutable Aliasing_In “"NewOrder(). Allows Caller Modify "price/quantity/TPSL" After Order Creation

ASA-96 :

ASA-97 .

FILLED Orders Can Be Reactivated

"AllOrNone” OCO Strategy Incorrectly Implemented — Behaves Same As "OneCancelsOther

ASA-98

: Invalid State Transition In "TPSLOrder.Cancel()’

ASA-99

: Missing_Check In “"MakeTimeNonceError()” Function

ASA-116 : Incorrect “fromAmount” Logging_In “TransformLock()" Function

ASA-117 : Incorrect Error Messages In “validate()

ASA-118 : Discussion On Missing_Metadata” In Signing_Message

ASA-119 : Discussion On Non-Functional WAL Manager Initialization

ASA-120 : Discussion On Logging_Errors Without Return

ASA-121 : Discussion On Order Cleanup After Trade Settlement Failure

ASA-122 : Duplicate "OrderType" Check In “validate()” Of "OrderContext” And “StopOrderContext

ASA-123 : Discussion On Latest Traded Price Updated As Orderbook's Price

ASA-124 : Discussion On Incomplete Stage Logic

ASA-132 : Missing_Checks In "Copy/()_Of "StopOrder” And "TPSLOrder"

ASA-133 : Missing Nil Check Of Trade In “processTradesAndCleanup()_

ASA-67

: Discussion On Any Token That Is Pre-Registered

I Appendix

I Disclaimer

. -AUDIT

Y cerTiK CODEBASE | ALPHASEC. - AUDIT

CODEBASE | ALPHA SEC. - AUDIT

I Repository

https://github.com/kaiachain/go-ethereum

https://github.com/kaiachain/kaia-orderbook-dex-core

https://github.com/kaiachain/kaia-orderbook-dex-core-contracts

https://github.com/kaiachain/kaia-orderbook-dex-token-bridge-contracts

I Commit

6101af6996bf7b18cc86c89fae7bb0425663fc24

188b1089712be2a547433a584d1813f03e2cabe8

6bb9e9eeeefbaabeccheflf608618elea2f00737

5aed5069b5b13e120eae06a58a53303decelea33

I Audit Scope

The file in scope is listed in the appendix.

https://github.com/kaiachain/go-ethereum
https://github.com/kaiachain/kaia-orderbook-dex-core
https://github.com/kaiachain/kaia-orderbook-dex-core-contracts
https://github.com/kaiachain/kaia-orderbook-dex-token-bridge-contracts
https://github.com/kaiachain/go-ethereum/tree/6101af6996bf7b18cc86c89fae7bb0425663fc24
https://github.com/kaiachain/kaia-orderbook-dex-core/tree/188b1089712be2a547433a584d1813f03e2ca6e8
https://github.com/kaiachain/kaia-orderbook-dex-core-contracts/tree/6bb9e9eeeef6aabeccbef1f608618e1ea2f00737
https://github.com/kaiachain/kaia-orderbook-dex-token-bridge-contracts/tree/5aed5069b5b13e120eae06a58a53303dece1ea33

@ CERTIK APPROACH & METHODS | ALPHASEC. - AUDIT

APPROACH & METHODS | ALPHA SEC. - AUDIT

This audit was conducted for Kaia to evaluate the security and correctness of the smart contracts associated with the Alpha
Sec. - audit project. The assessment included a comprehensive review of the in-scope smart contracts. The audit was

performed using a combination of Manual Review and Static Analysis.
The review process emphasized the following areas:

« Architecture review and threat modeling to understand systemic risks and identify design-level flaws.

Identification of vulnerabilities through both common and edge-case attack vectors.
« Manual verification of contract logic to ensure alignment with intended design and business requirements.
« Dynamic testing to validate runtime behavior and assess execution risks.

« Assessment of code quality and maintainability, including adherence to current best practices and industry standards.

The audit resulted in findings categorized across multiple severity levels, from informational to critical. To enhance the
project’s security and long-term robustness, we recommend addressing the identified issues and considering the following

general improvements:

« Improve code readability and maintainability by adopting a clean architectural pattern and modular design.
« Strengthen testing coverage, including unit and integration tests for key functionalities and edge cases.

e Maintain meaningful inline comments and documentations.

« Implement clear and transparent documentation for privileged roles and sensitive protocol operations.

« Regularly review and simulate contract behavior against newly emerging attack vectors.

Y cerTiK OVERVIEW | ALPHASEC. -AUDIT

OVERVIEW | ALPHA SEC. - AUDIT

I Introduction

The Alpha Sec. (Kaia Orderbook DEX) is a high-performance decentralized exchange (DEX) implemented as a protocol-
level extension on a customized Layer 2 (L2) chain. Its primary objective is to provide an on-chain orderbook trading

environment with low latency, high throughput, and minimal costs, rivaling the performance of centralized exchanges (CEX).

The project's core innovation lies in its protocol-native design philosophy. Unlike traditional DEXs built entirely on smart
contracts, Alpha Sec. integrates critical trade processing functions—such as order matching, balance management, and
conditional order handling—directly into the client execution logic of the Arbitrum Nitro L2 node (a fork of Geth). This design
allows computationally intensive operations to bypass the performance bottlenecks of the EVM, enabling significant
performance gains. The blockchain's role is transformed into a highly optimized, application-specific state machine, while

retaining the security guarantees provided by the Arbitrum Rollup framework.

To further optimize user experience and cater to high-frequency trading scenarios, the protocol introduces several
foundational account model extensions, including native multi-token accounts, session key delegation, and an enhanced

nonce mechanism.
The scope of current engagement mainly focuses on the following 3 components:

1. Orderbook Based Matching Engine
2. Deposit & Withdrawal Processing

3. Session Wallet Usage

Note: Per the Alpha Sec. team’s request, the current report has been redacted, including the sections covering the finding

description, potential scenarios, proof of concept, recommendations, and remediation details.

I Architecture & Key Innovations

Architectural Overview

The Alpha Sec. employs a deeply integrated, layered architecture that moves core trading functions from the EVM
application layer down to the L2 protocol's execution layer. This design is intended to minimize overhead and enable direct,

high-efficiency communication between components. The system architecture can be divided into five logical layers:

« Foundation Layer: Defines the core data structures (e.g., order , Trade , StopOrder)and behavioral contracts

(interfaces) for the entire orderbook system.

« Core Logic Layer: Contains the concrete implementations of the orderbook (orderBook), priority queues

(Buy/SellqQueue), and the matching algorithm (PriceTimePriority).

« Business Logic Layer: Orchestrates the core logic components to form complete business functions. At this layer, the

SymbolEngine orchestrates matching, conditional order processing, and balance operations for each trading pair.

« Persistence Layer: Manages the system's state snapshots and recovery logic, ensuring data consistency after a node

restart or crash.

Y cerTiK OVERVIEW | ALPHASEC. -AUDIT

« External Interface Layer: Serves as the system's main entry point. The Dispatcher at this layer manages all
SymbolEngine instances, handles asynchronous requests from users, and coordinates with the on-chain state and

balance management modules.

Key Innovations
The protocol achieves its core functionality through several key modifications to the underlying Arbitrum Nitro stack:

« Protocol-Level Orderbook: Order matching logic is executed natively by the modified L2 node client (a fork of Geth)
rather than through EVM smart contracts. This allows order processing to avoid EVM overhead, aiming for ultra-low
latency.

« Command-Based Transactions: Users' DEX operations (e.g., placing or canceling orders) are encoded as specific
commands, encapsulated within standard Ethereum transactions, and sent to a dedicated address (ox...cc) for
interception and native processing, without introducing new transaction types for DEX operations.

« Unified Token System: The account state is extended at the protocol level to natively support balances for multiple
tokens. Internal asset transfers and trade settlements directly modify this underlying state, bypassing the EVM and
significantly reducing operational costs.

« Session Delegation: Introduces temporary, time-limited "session keys" that allow users to grant one-time authorization
for continuous, high-frequency trading within a dApp, eliminating the need to sign every transaction and thus optimizing
the user experience.

« Enhanced Nonce System: Combines the standard State Nonce with a Time Nonce, which is based on millisecond-level
timestamps and designed for session keys, to support high concurrency and a degree of out-of-order transaction

processing while maintaining security.

I Core Components & Workflows

This section details the core components that constitute the Alpha Sec. and describes their roles and interactions in

processing the transaction lifecycle.

Account Model & State Extensions

To support the native orderbook functionality, the standard Ethereum account model has been extended at the protocol layer

with several key fields:

« Balances (Native Multi-Token Balances): Each account contains a Balances structure to store the balances of
multiple native tokens. This structure implements a dual-balance system:

e Available : Funds that can be used to place new orders or make transfers.

* Locked : Margin that has been locked by active orders and cannot be used for other operations. This model is
managed by the balance.Manager module, which ensures atomic operations for balance changes during order

placement, settlement (including for partial fills), and cancellation.

e Sessions (Session List): This supports the session key delegation feature. Each account can be associated with one
or more Session objects, each defining a delegated temporary public key (PublicKey) and its expiration (ExpiresAt
block number). Session lifecycle management is handled via SessionContext commands, which require an EIP-712

signature from the main account (' L10wner).

Y cerTiK OVERVIEW | ALPHASEC. -AUDIT

« TimeNonce (Timestamp Nonce List): This is a cache list designed to support high-concurrency transactions for session
keys. It stores recently used nonces, which are based on millisecond-level timestamps, to prevent replay attacks while

allowing for a degree of out-of-order transaction processing.

Command-Based Transaction System

All DEX-related operations are executed through a command system that leverages standard Ethereum transactions as

carriers.

« Entry Point: A user sends a standard transaction to a predefined contract address ox. . .cc .

o Command Format: The transaction's Input Data is formatted as [Command Byte] + [Serialized Data] . The
command Byte identifies the operation type, and the Serialized Data contains the specific parameters encoded in
JSON.

» Core Commands:

e SessionContext :Used to manage session keys.
e ValueTransferContext : Used to execute internal L2 native token (Kaia) transfers.
e TokenTransferContext : Used to execute internal L2 ERC20 token transfers.

e OrderContext : Used to submit new orders, supporting limit, market, Base/Quote Mode, and optional TPSL

settings.
e CancelContext / CancelAllContext :Used to cancel a single or all active orders.
e ModifyContext : Used to modify the price or quantity of an existing order.

e StopOrdercContext : Used to submit standalone conditional orders.

« Validation Flow: Before execution, every command is rigorously validated by the validate method defined in
tx_input.go . This includes checks for parameter sanity, business logic consistency (e.g., TPSL price relationships),

market rules (price/quantity precision), and user balances.

Asset Bridging (ArbTokenlssuer)

The deposit and withdrawal of assets are managed by a precompiled contract named ArbTokenIssuer , deployed at

address oxdf .
o Deposit (Mint):
1. When a user deposits an ERC20 token via the L1 gateway, an L1-to-L2 message triggers a call to the L2 gateway
contract.

2. The L2 gateway contract calls the mint function of the precompile.

3. The Go implementation of ArbTokenIssuer performs strict permission checks (verifying the caller's code hash
and the aliased address of the message sender) to ensure only messages from the official L1 gateway can

execute a mint.

4. For new tokens, the system automatically parses metadata from the calldata , registers the token, and emits a

TokenRegistered event.

- G cerTiK OVERVIEW | ALPHASEC. - AUDIT

5. Finally, ArbTokenIssuer callsthe stateDB interface to add the corresponding native balance to the user's

account and emits a TokenTransfer eventwith address(0) asthe from address.

o Withdrawal (Burn):

1. Auser signs a transaction to call a withdrawal function on the L2 gateway contract.
2. The L2 gateway contract calls the burn function of the precompile.

3. ArbTokenIssuer Verifies that the caller is an authorized gateway and, critically, validates that the transaction's

signer (msg.sender) is the owner of the account from which assets are being burned.

4. Atfter checking for sufficient balance, ArbTokenIssuer callsthe StateDB interface to subtract the native balance
from the user's account and emits a TokenTransfer eventwith address(0) asthe to address, signaling the
L1 gateway to release the assets.

Core Orderbook Workflow
The orderbook system operates around a clear, layered architecture with the Dispatcher as the top-level coordinator.

1. Request Dispatching (Dispatcher): The Dispatcher receives all commands via an asynchronous request channel
(requestchan). Acting as the Balance Coordinator, it first calls the balance.Manager to pre-lock the margin for new

orders. It then routes the request to the appropriate SymbolEngine instance based on the order's trading pair (Symbol).

2. Per-Symbol Processing (symbolEngine): The SymbolEngine serves as the business logic hub for a single trading
pair. It receives an order and invokes the matching.PriceTimePriority module (the matching algorithm). The matching
algorithm interacts with the book.0rderBook (the orderbook data structure) to perform matching and produce Trade
records. After matching, the SymbolEngine checks if any conditional orders (like Stop Orders) were triggered by the
latest trade price, or if a filled main order needs its associated TPSL to be activated. Triggered or activated orders are
placed into an internal triggered order queue and are processed iteratively in a BFS (Breadth-First Search) manner within

the same transaction to ensure atomicity of chained triggers.

3. Settlement: The SymbolEngine returns a list of generated Trade stothe Dispatcher . The Dispatcher iterates
through the Trade s and calls the balance.Manager 's SettleTrade function for each one. SettleTrade performs
the final clearing: it consumes the Locked balances of the buyer and seller, calculates and deducts fees, and then
credits the net amounts to the respective parties' Available balances. SettleTrade performs the final clearing, a

process that includes precise fee calculation and distribution.

I Order Lifecycle & Processing Flow

Order processing in the Kaia DEX follows a well-defined, structured lifecycle designed to ensure atomicity, consistency, and
high performance.

Order States

An order progresses through several core states during its lifecycle:

e NEW : The initial state when an order is created.

G cerTIK OVERVIEW | ALPHASEC. - AUDIT

e PENDING : For aregular limit order, this state indicates the order has passed validation and is resting in the order book,
awaiting a match. For a conditional order (Stoporder , TPSL), this state indicates the order is waiting for the market
price to reach its trigger condition.

e FILLED : The order has been fully executed.

e PARTIALLY FILLED : The order has been partially executed, with the remainder still resting in the order book.
e CANCELED : The order was actively canceled by the user.

e REJECTED : The order was rejected during order matching.

e TRIGGERED :A conditional order's trigger condition has been met, and it is being converted into a regular order to enter

the matching flow.

e TRIGGERED_WAIT : A conditional order's trigger condition has not been met yet.

Regular Order Flow
The processing flow for a regular limit or market order is as follows:

1. Validation: Upon receiving an oOrderRequest , the Dispatcher performs initial validation as defined in tx_input.go ,

checking the command format and business logic.

2. Locking: After validation, the Dispatcher callsthe balance.Manager to calculate and lock the user's margin for the

order (Available -> Locked).

3. Routing & Matching: The Dispatcher routes the order to the corresponding SymbolEngine . The SymbolEngine
invokes the matching.PriceTimePriority algorithm, which matches the incoming order (Taker) against existing
counter-party orders (Makers) in the orderBook .

4. Conditional Check: After matching produces a new market price, the SymbolEngine calls the conditional.Manager

to check if any pending conditional orders (Stop or SL orders) have been triggered.

5. Settlement: The SymbolEngine returns the execution records (Trade s) to the Dispatcher . The Dispatcher then
calls balance.Manager.SettleTrade to perform clearing, which includes consuming the Locked balances of both

parties, calculating fees, and crediting the net amounts to their Available balances.

6. Queue Update: If the Taker order was a limit order and was not fully filled, its remaining portion is added to the
appropriate buy/sell queue in the orderBook , becoming a new Maker order. The remainder of a market order is

canceled.

7. Post-processing: For orders that are fully filled or canceled, the balance.Manager releases any remaining locks, and

the Dispatcher cleans up the order's information from its internal caches.

TPSL Order (Attached Conditional Orders): The processing of a TPSL is a multi-stage activation flow that occurs after its

parent order is filled:

1. Activation: A main order with a TPsL field is fully filled (FILLED). The SymbolEngine detects this and calls the

conditional.Manager 'S CreateTPSLForFilledOrder method.

2. Decomposition: The activation rule module decomposes the TPSL context into two separate child orders, whose

quantities are set to the original quantity of the parent order:

« Take-Profit (TP) Order: As a regular, opposite-side limit order.

QY cerTiK OVERVIEW | ALPHASEC.-AUDIT

s Stop-Loss (SL) Order: As a conditional order encapsulated in a StopLossTrigger .

3. Routing: The conditional.Manager routes the decomposed orders to different destinations via callbacks: The newly
created TP limit order is received by the orderProcessor callback and is placed directly into the main order book as an
active resting order. The newly created sL conditional order is registered with the triggerManager to await its price

trigger.

4. OCO Relationship Binding: The oco_controller module registers the "One-Cancels-the-Other" (OCO) relationship

betweenthe TP and sSL orders.

5. Execution & Finalization: Subsequently, when either the TP limit order is matched in the main orderbook or the 'sL
conditional order is triggered by price in the triggerManager ,the oco_controller isinvoked to automatically cancel

the other outstanding order, thus concluding the TPSL's lifecycle.

Conditional Order Flow
Stoporder (Standalone Conditional Order):

1. Auser submits a StopOrderContext .
2. The Dispatcher validates it and fully locks the margin that would be required for its future execution.

3. The order is encapsulated into a StoporderTrigger object and registered with the conditional.Manager 's

triggerManager , entering the PENDING (conditional) state.

4. After each new trade occurs in the market, the SymbolEngine calls conditional.Manager.CheckTriggers withthe

latest market price.

5. Ifthe StopPrice is met, the triggerManager changesthe StopOrderTrigger 's state to TRIGGERED , converts it into

aregular order, and places it in the SymbolEngine 's processing queue, where it enters the regular order flow.

Persistence & State Recovery

Orderbook v2 durability hinges on periodic full snapshots plus per-block deltas managed by PersistenceManager , written
via SnapshotManager / Deltawriter , and replayed by RecoveryEngine so the dispatcher, engines, and balance locks

always return to their pre-crash state.

« PersistenceManager.WriteSnhapshot captures an immutable copy of all dispatcher + engine state at the configured
block interval and queues it for synchronous or async storage through SnapshotManager , based on the active

OrderbookConfig .

« After each block, Dispatcher hands the block’s types.DispatcherDelta to Deltawriter , which serializes it under
orderbook-delta-<block> ; sync mode writes immediately, while async mode batches via a background goroutine

before committing to ethdb .

« On restart, RecoveryEngine.RecoverUpToBlock finds the most recent snapshot at or before the target height, restores
it via dispatcher.RestoreFromSnapshot, then streams every stored delta in order until the dispatcher reflects the

desired block.

« Once replay completes, the dispatcher resumes live processing with the exact same order books, conditional queues,

and balance locks that existed before the outage, ensuring no accepted command is lost.

G cerTiK OVERVIEW | ALPHASEC.-AUDIT

I Summary

The architecture of the Alpha Sec. presents a well-considered, protocol-native trading system designed for high performance
and low latency. By moving the core functionalities of an orderbook—such as matching, balance management, and
conditional orders—from the EVM application layer down to the L2 client's execution layer, the project aims to fundamentally

address the performance bottlenecks of traditional on-chain DEXs.

Overall, the Alpha Sec. architecture is a complex and deeply customized L2 solution. It deliberately trades some EVM
generality for ultimate performance in the specific domain of trading. Its workflows and component designs reflect an

adoption of modern centralized exchange architectural patterns, creatively combined with the decentralized nature of the
blockchain.

Reference

o https://docs.alphasec.trade/

« Internal design documentation

« https://docs.arbitrum.io/get-started/overview

https://docs.alphasec.trade/
https://docs.arbitrum.io/get-started/overview

@CER‘TIK

FINDINGS ‘ ALPHA SEC. - AUDIT

P

67 0

Total Findings Critical Centralization Major

Medium

FINDINGS | ALPHA SEC. - AUDIT

12

Minor Informational

This report has been prepared for Kaia to identify potential vulnerabilities and security issues within the reviewed codebase.

During the course of the audit, a total of 67 issues were identified. Leveraging a combination of Manual Review & Static

Analysis the following findings were uncovered:

ID

ASA-125

ASA-68

ASA-69

ASA-70

ASA-71

ASA-72

ASA-73

ASA-74

ASA-75

ASA-76

ASA-77

Title

Missing Ownership Validation In Order

Cancellation

Unrestricted Session.Metadata Field

Enables Potential DoS Attack

TPSL Lock Logic May Fail Due To
Premature Locking Of Unsettled Assets

GetordersSorted() Corrupts Original

Queue

Market Order Locking Allows DoS Via

Insufficient Balance

Unbounded Wallet Sessions Enable
Denial Of Service

Missing Handling Of Failedorders In

ModifyOrder ()

Balance Manager Records Locks Even
When State Locking Fails

Inconsistent Order State Due To Incorrect

Lock Amount Update

Improper Locking Order (Race Condition)

In Lock()

Potential Transaction Bloat Attack Due To

Trailing Bytes

Category

Inconsistency,

Denial of Service

Denial of Service

Logical Issue

Logical Issue

Design Issue

Denial of Service

Inconsistency,

Logical Issue

Coding Issue

Coding Issue

Logical Issue

Denial of Service

Severity

Major

Major

Major

Major

Major

Major

Major

Medium

Medium

Medium

Medium

Status

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

@CER‘TIK

ID

ASA-78

ASA-79

ASA-80

ASA-81

ASA-82

ASA-83

ASA-84

ASA-85

ASA-86

ASA-100

ASA-101

ASA-102

ASA-103

ASA-104

Title

Ambiguous Quantity Semantics Between

Quote And Base Tokens

Lot-Size/Dust Validation Bypass For SELL
Market Orders In Quote Mode After Lock

Limiting

Incorrect Unlock Identifier In
createTPSLOrders May Cause Stuck

TPSL Locks And Balance Inconsistency

Discussion On Gas-Free Dex Commands

Design That Enables Multi-Layer DoS

Both TP Order And SL Orders Could Exist

In Orderbook In Some Edge Cases

TriggeredQueue Not Restored From

Engine Snapshot

Incorrect Value Copy During Aggregation

Leads To Erroneous Market Depth

Non-Atomic TPSL Creation Can Lead To

Orphaned Orders And Inconsistent State

Funds Unlocked Before Order Removal In

handleCancelAllRequest()

Potential Exploitation Of SL Market Orders

Via Extreme Price Updates

Unsynchronized And Unvalidated
Metadata Persistence In stop() Causes

WAL Inconsistency

Potential Overflow Leads To Panic With

MustFromBig()

Insufficient Constraint On Data Size

Expired Session Wallet Does Not Fall

Category

Coding Style

Logical Issue

Inconsistency,

Logical Issue

Design Issue, Denial

of Service

Design Issue

Coding Issue

Logical Issue

Logical Issue

Volatile Code,

Denial of Service

Design Issue

Logical Issue

Volatile Code

Volatile Code

Inconsistency

Severity

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Minor

Minor

Minor

Minor

Minor

FINDINGS | ALPHA SEC. - AUDIT

Status

® Resolved

® Resolved

® Resolved

Acknowledged

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

Acknowledged

® Resolved

® Resolved

® Resolved

® Resolved

- @EERTIK

ID

ASA-105

ASA-106

ASA-107

ASA-108

ASA-109

ASA-110

ASA-111

ASA-112

ASA-113

ASA-114

ASA-115

ASA-126

ASA-127

ASA-128

Title

Missing Nonzero Check Of Input data

Dispatcher Panics On Shutdown If New

Requests Arrive After Stop()

Missing LockedAmount In Deep Copy

Method copy() Of order

validate() Misses Validation Of

OrderMode

Missing Validation Of Existing Order In
validate() Of ModifyContext

Incorrect Order Of Return Values In

GetOrderbookSnapshot ()

Non-Determinism Due To Map lteration

Time-Nonce Validation Could Possibly Be
Bypassed In

timeNonceDriftAcceptable()

Missing Validation Of Existing Order In

validate() Of CancelAllContext

Missing Deep Copy Of Order Information
In CreateModifiedOrder ()

Async Delta Loss Due To Premature Dirty-

Flag Reset

Non-Atomic Lock Consumption Can Leave

Balances Partially Consumed On Failure

Discussion On Logged Settlement And
OCO Failures Without Proper Handling

Missing Comparison Between SLLimit

And SLTrigger

Category

Volatile Code

Denial of Service,
Volatile Code

Volatile Code,

Inconsistency

Volatile Code,

Inconsistency

Volatile Code,

Inconsistency

Logical Issue

Volatile Code,

Inconsistency

Inconsistency,

Volatile Code

Volatile Code

Volatile Code

Volatile Code,

Inconsistency

Volatile Code

Inconsistency

Logical Issue

Severity

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

FINDINGS | ALPHA SEC. - AUDIT

Status

Acknowledged

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

Acknowledged

® Resolved

® Resolved

® Resolved

Acknowledged

® Resolved

® Resolved

Acknowledged

@CERTIK

ID Title Category

Stale Depth From In-Place Order Mutation
ASA-129 Volatile Code
In UpdateOrder ()

TPSL Creation Failure Leaves Stale Pre-

ASA-130) Inconsistency
Registered TP/SL Routes
ASA-131 Market Orders Accept Negative Prices Volatile Code
Order Lock Can Be Removed When Volatile Code,
ASA-87 .
oldorderID Equals NewOrderID Logical Issue

Missing Nil Pointer Check In copy() Of Volatile Code,
ASA-88

ValueTransferContext Coding Issue

Unsafe Internal Pointer Exposure Via)
ASA-89 Logical Issue
GetBuyOrders()

Order Quantity And Price Validation Uses
ASA-90 Iszero() Instead Of sign() To Ensure Volatile Code
Strict Positivity

Reversed Conditional In .
ASA-91 Logical Issue
TokenTransferContext.copy()

Missing Copy Of LockedBalance In
ASA-92 Inconsistency
Copy() Of stateAccount

ASA-93 Missing LockedBalance In Account Inconsistency

Non-Deterministic MarshalJSon() Of)
ASA-94 Inconsistency
Balances

Mutable Aliasing In Neworder () Allows
ASA-95 Caller Modify price/quantity/TPSL After Logical Issue

Order Creation

ASA-96 FILLED Orders Can Be Reactivated Logical Issue

AllorNone OCO Strategy Incorrectly
ASA-97 Implemented — Behaves Same As Inconsistency

OneCancelsOther

STEVEI Y

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

FINDINGS | ALPHA SEC. - AUDIT

Status

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

Acknowledged

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

- @EER‘TIK

ID Title Category

Invalid State Transition In)
ASA-98 Logical Issue
TPSLOrder.Cancel()

Missing Check In MakeTimeNonceError () Logical Issue,
ASA-99) .
Function Inconsistency

Incorrect fromAmount Logging In)
ASA-116) Logical Issue
TransformLock() Function

ASA-117 Incorrect Error Messages In validate() Inconsistency

Discussion On Missing Metadata In)
ASA-118 o Inconsistency
Signing Message

Discussion On Non-Functional WAL)
ASA-119 o Logical Issue
Manager Initialization

Discussion On Logging Errors Without Design Issue,
ASA-120)
Return Coding Issue

Discussion On Order Cleanup After Trade
ASA-121) Coding Issue
Settlement Failure

Duplicate orderType Check In
ASA-122 validate() Of orderContext And Code Optimization

StopOrderContext

Discussion On Latest Traded Price
ASA-123) Design Issue
Updated As Orderbook's Price

ASA-124 Discussion On Incomplete Stage Logic Coding Issue

Missing Checks In copy() Of)
ASA-132 Volatile Code
StopOrder And TPSLOrder

Missing Nil Check Of Trade In .
ASA-133 Volatile Code

processTradesAndCleanup()

Discussion On Any Token That Is Pre- Logical Issue,
ASA-67))
Registered Inconsistency

FINDINGS | ALPHA SEC. - AUDIT

Severity

Minor

Minor

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Status

Acknowledged

Resolved

Resolved

Resolved

Resolved

Resolved

Acknowledged

Acknowledged

Resolved

Acknowledged

Acknowledged

Resolved

Resolved

Acknowledged

QY cerTIK ASA125 | ALPHASEC. - AUDIT

ASA-125 ‘ Missing Ownership Validation In Order Cancellation

Category Severity Location Status

Inconsistency, Denial of Service Major core/types/tx_input.go (go-ethereum-6101af6): 572 ® Resolved

I Description

CancelContext.validateBalance() only checks for the existence of the order and does not verify that the order belongs to
the provided L1Owner. There is no subsequent ownership enforcement in dispatcher.handleCancelRequest or

engine.CancelOrder , SO any account can cancel another user's order by supplying its orderld.

I Recommendation

Fetch the order by ID and verify order.UserID matches L10Owner before returning success.

I Alleviation

[Kaia, 12/11/2025]:

Issue acknowledged. Changes have been reflected in the commit de68b010cchlad77c6f89f64445fc56€65948489 .

https://github.com/kaiachain/go-ethereum/commit/de68b010ccb1ad77c6f89f64445fc56e65948489

G cerTIK ASA68 | ALPHASEC.-AUDIT

ASA-68 | Unrestricted Session.Metadata Field Enables Potential DoS
Attack

Category Severity Location Status

Denial of Service Major core/types/session.go (go-ethereum-6101af6): 28 ® Resolved

I Description

The Metadata field inthe Session struct of the session DEX command transaction does not appear to be utilized and

restricted during the transaction process.

I Recommendation

Recommend adding size validation of Metadata during the transaction validation or removing it if it's not intended to be
used in the codebase.

I Alleviation

[Kaia, 10/30/2025]:

Issue acknowledged. Changes have been reflected in the commit feca®4c6de945fcedd24e7e8c317a65f323f1375 .

https://github.com/kaiachain/go-ethereum/commit/feca04c6d0945fce0d24e7e8c317a65f323f1375

G cerTIK ASA69 | ALPHASEC.-AUDIT

ASA-69 | TPSL Lock Logic May Fail Due To Premature Locking Of

Unsettled Assets
Category Severity Location Status
Logical) core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-6101af6): 366;
Major)) ® Resolved
Issue core/orderbook/v2/engine/symbol_engine.go (go-ethereum-6101af6): 814

I Description

The TPSL locking mechanism assumes that the original order’s settlement has already been completed, meaning the user
has received the traded tokens (base tokens for a BUY order or quote tokens for a SELL order).

I Recommendation

Defer TPSL lock creation until after trade settlement is completed.

I Alleviation

[Kaia, 11/26/2025]:

Issue acknowledged. Changes have been reflected in the commits ¢52b8e253d3f3d465b419b392d8e08e1fa495738 and

7a5c1fa2d15d273e505933a614b7c97e201c310cC .

https://github.com/kaiachain/go-ethereum/commit/c52b8e253d3f3d465b419b392d8e08e1fa495738
https://github.com/kaiachain/go-ethereum/commit/7a5c1fa2d15d273e505933a614b7c97e201c310c

G cerTIK ASA70 | ALPHASEC.-AUDIT

ASA-70 ‘ GetOrdersSorted() Corrupts Original Queue

Category Severity Location Status
Logical) core/orderbook/v2/queue/buy_queue.go (go-ethereum-6101af6): 89~108;

Major ® Resolved
Issue core/orderbook/v2/queue/sell_queue.go (go-ethereum-6101af6): 89~108

I Description

GetOrdersSorted() is supposed to be a read-only getter, but it mutates the original BuyQueue/SellQueue’s orders. It
creates a shallow copy of the orders slice, so the temporary heap operates on the exact same *types.Order objects as the

original queue.

I Recommendation

Sorting must not rely on or modify the heap.

I Alleviation

[Kaia, 11/05/2025]:

Issue acknowledge. Changes have been reflected in commit f7851a97ebb5b22debbfdad16a4866eebead165d .

https://github.com/kaiachain/go-ethereum/commit/f7851a97ebb5b22debbfdad16a4866eebea0165d

G cerTIK ASA71 | ALPHASEC.-AUDIT

ASA-71 ‘ Market Order Locking Allows DoS Via Insufficient Balance

Category Severity Location Status
Design . core/orderbook/v2/balance/manager.go (go-ethereum-6101af6): 325~32

Major ® Resolved
Issue 6, 490

I Description

In LockFororder () , when handling market orders, the function calls calculateMarketOrderAmount to determine the
amount to lock. During execution, m.Lock() fails due to insufficient balance, causing the transaction to revert and not be

included in the block.

I Recommendation

Consider preventing these type of transactions during the transaction validation process.

I Alleviation

[Kaia, 11/26/2025]:

Issue acknowledged. Changes have been reflected in the commit 9897543b4bcec2bfdff064941f0e5b3588076ccO .

https://github.com/kaiachain/go-ethereum/commit/9897543b4bcec2bfdff064941f0e5b3588076cc0

QY cerTIK ASA72 | ALPHASEC.-AUDIT

ASA-72 ‘ Unbounded Wallet Sessions Enable Denial Of Service

Category Severity Location Status
Denial of . core/types/transaction.go (go-ethereum-6101af6): 448; arbos/tx_proce

) Major ® Resolved
Service ssor.go (dex-core-188h108): 549

I Description

The Kaia orderbook stack persists every wallet session directly in the account record without enforcing any per-address limit.

I Recommendation

Enforce a strict per-address session cap.

I Alleviation

[Kaia, 11/06/2025]:

Issue acknowledged. Changes have been reflected in the commit ea27589bch58d6c5222023a6ec0eh7287aeals43 .

https://github.com/kaiachain/go-ethereum/commit/ea27589bcb58d6c5222023a6ec0eb7287aea1543

QY cerTIK ASA73 | ALPHASEC.-AUDIT

ASA-73 ‘ Missing Handling Of Failedorders In ModifyOrder()

Category Severity Location Status
Inconsistency, Logical) core/orderbook/v2/engine/symbol_engine.go (go-ethereum-6

Major ® Resolved
Issue 101af6): 675, 686~691

I Description
Modifyorder () ignores the information of failed IDs, its ModifyResult only exposes NewOrder , Trades ,
TriggeredorderIds , and CancelledOrderIds , but drops FailedOrders .

I Recommendation

Expose the Failedorders list through ModifyResult and ensure they are processed by the dispatcher.

I Alleviation

[Kaia, 11/23/2025]:

Issue acknowledged. Changes have been reflected in the commit 912bee211bc712425e6d9730f58b758f91c5b332 .

https://github.com/kaiachain/go-ethereum/commit/912bee211bc712425e6d9730f58b758f91c5b332

G cerTIK ASA-74 | ALPHASEC.-AUDIT

ASA-74 | Balance Manager Records Locks Even When State Locking
Fails

Category Severity Location Status

core/orderbook/v2/balance/manager.go (go-ethereum-6101af6): 89, 14
Medium 7, 283, 769~772; core/state/state_object.go (go-ethereum-6101af6): 79 ® Resolved
6; core/state/statedb.go (go-ethereum-6101af6): 582~587

Coding

Issue

I Description

The UpdateLockForTriggeredMarketOrder() persists LockInfo entries after calling StateDB.LockTokenBalance()

without checking the returned error. The state layer also drops the error from stateObject.LockTokenBalance() .

I Recommendation

Propagate the error returned by stateObject.LockTokenBalance() (and ConsumeLockTokenBalance()) atthe StateDB
level.

I Alleviation

[Kaia, 11/26/2025]: Issue acknowledge. Changes have been reflected in the commit
30a767da95b547cbefe3077364dc72e29871699f .

https://github.com/kaiachain/go-ethereum/commit/30a767da95b547cbefe3077364dc72e29871699f

G cerTIK ASA75 | ALPHASEC.-AUDIT

ASA-75 ‘ Inconsistent Order State Due To Incorrect Lock Amount Update

Category Severity Location Status
Coding) core/orderbook/v2/balance/manager.go (go-ethereum-6101af6): 403~

| Medium A15 ® Resolved
ssue

I Description

The UupdateLockForTriggeredMarketOrder() function is designed to increase the locked balance for a triggered stop-
market order by securing any additional available funds. The function correctly calculates a newAmount and updates the
central lock record via m.UpdateLock . However, the function then assigns the old lock amount back to the in-memory

order.LockedAmount field.

I Recommendation

Update the in-memory value to reflect the latest amount after the lock update.

I Alleviation

[Kaia, 10/29/2025];

Issue acknowledged. Changes have been reflected in the commit ¢3d0dceecd6fd173fa940bcf2ed61diffdfocdse .

https://github.com/kaiachain/go-ethereum/commit/c3d0dc00cd6fd173fa940bcf2ed61d1ffdf9cd5c

G cerTIK ASA76 | ALPHASEC.-AUDIT

ASA-76 ‘ Improper Locking Order (Race Condition) In Lock()

Category Severity Location Status

Logical core/orderbook/v2/balance/manager.go (go-ethereum-6101af6): 79~80,
ogica
Medium 89, 147, 283, 769~772; core/state/state_object.go (go-ethereum-6101af ® Resolved

6): 796; core/state/statedb.go (go-ethereum-6101af6): 582~587

Issue

I Description

In Lock() function, the balance check occurs before acquiring m.mu , meaning two concurrent Lock() calls for the same

user could both see sufficient funds and proceed to lock them simultaneously.

I Recommendation

Acquire m.mu before calling GetTokenBalance() and performing the balance check to make the check-and-lock operation
atomic.

I Alleviation

[Kaia, 10/29/2025];

Issue acknowledged. Changes have been reflected in the commit 7116ab82e6e97c1b6da2ea58607a18900f89e747 .

https://github.com/kaiachain/go-ethereum/commit/7116ab82e6e97c1b6da2ea58607a18900f89e747

G cerTIK ASA77 | ALPHASEC.-AUDIT

ASA-77 ‘ Potential Transaction Bloat Attack Due To Trailing Bytes

Category Severity Location Status

core/types/session.go (go-ethereum-6101af6): 47; corel/types/tx_input.
Medium go (go-ethereum-6101af6): 102, 191, 564, 627, 666, 977; core/types/v. ® Resolved

Denial of

Service
alue_transfer.go (go-ethereum-6101af6): 30
I Description
The DEX command transaction type uses json.Unmarshal() to decode transaction bytes. However, json.uUnmarshal()
tolerates trailing bytes, without raising an error.
I Recommendation

Recommend strictly decoding the transaction bytes via rejecting any trailing bytes.

I Alleviation

[Kaia, 11/22/2025]:

Issue acknowledged. Changes have been reflected in the commit 10074c0025921de77b15336574e9deal36c58b5f .

https://github.com/kaiachain/go-ethereum/commit/10074c0025921de77b15336574e9dea136c58b5f

QY cerTIK ASA-78 | ALPHASEC.-AUDIT

ASA-78 | Ambiguous Quantity Semantics Between Quote And Base

Tokens
Category Severity Location Status
Coding) core/orderbook/v2/matching/price_time_priority.go (go-ethereum-6101
Medium ® Resolved
Style af6): 283

I Description

In the trade execution logic, the interpretation of Quantity is inconsistent across different parts of the matching process.

I Recommendation

Consider unifying the semantics of Quantity across all code paths.

I Alleviation

[Kaia, 11/27/2025]:

Issue acknowledged. Changes have been reflected in commit d9134f807b3df2b58315ab8ach4393392c6c4dd6 .

https://github.com/kaiachain/go-ethereum/commit/d9134f807b3df2b58315ab8acb4393392c6c4dd6

G cerTIK ASA79 | ALPHASEC.-AUDIT

ASA-79 | Lot-Size/Dust Validation Bypass For SELL Market Orders In
Quote Mode After Lock Limiting

Category Severity Location Status
Logical) core/orderbook/v2/matching/price_time_priority.go (go-ethereum-6101

Medium ® Resolved
Issue af6): 275

I Description

In matchMarketQuoteMode() , when the takerisa SELL order in quote mode and a base-asset lock
(order.LockedAmount) is present, the function reduces execQuantity to respect the lock after it has already performed

lot-size rounding and dust checks. It never re-applies lot-size rounding or dust validation to the new, smaller execQuantity .

I Recommendation

Consider applying the second round of RoundDownToLotSize/IsQuantityDust on this new execQuantity before creating
the trade.

I Alleviation

[Kaia, 11/26/2025]:

Issue acknowledged. Changes were reflected in the commit 2bf7081e0a0bd0b28690bi6ec4abbcib2ececfel .

https://github.com/kaiachain/go-ethereum/commit/2bf7081e0a0bd0b28690b16ec4abbc1b2ececfe1

G cerTIK ASA-80 | ALPHASEC.-AUDIT

ASA-80 | Incorrect Unlock Identifier In createTPSLOrders May Cause
Stuck TPSL Locks And Balance Inconsistency

Category Severity Location Status
Inconsistency, Logical core/orderbook/v2/engine/symbol_engine.go (go-ethereum

Medium ® Resolved
Issue -6101af6): 814, 824

I Description

The function createTPSLOrders() isintended to generate TPSL orders for a filled order that includes TPSL , and it
establishes an early TPSL lock through the createTPSLLock() function, which assigns a lock identifier in the format "
<orderID> TPSL" . If TPSL order creation fails, the rollback logic calls 'unlock() , using the original order ID instead of the

TPSL order ID.

I Recommendation

Update the rollback logic in createTPSLOrders() tocall e.balanceManager.Unlock() .

I Alleviation

[Kaia, 11/06/2025]:

Issue acknowledged. Changes have been reflected in the commit e9b3a813acOca7c5f371b4688824c968e9e5c385 .

https://github.com/kaiachain/go-ethereum/commit/e9b3a813ac0ca7c5f371b4e88824c968e9e5c385

G cerTIK ASA81 | ALPHASEC.-AUDIT

ASA-81 | Discussion On Gas-Free Dex Commands Design That Enables
Multi-Layer DoS

Category Severity Location Status

Design Issue, Denial of Service Medium Acknowledged

I Description

Alpha Sec. dex treats every Dex command transation as gas-free. That design removes the economic backstop that
normally throttles abusive traffic, potentially resulting the dos attack with transaction-specific path, oversized transaction and

Spam transactions.

I Recommendation

The gas-free mechanism of the dex command transaction one of the design choice currently implemented in the kaia
orderbook dex, the audit team would like to confirm with the team how such DoS attack vectors would be prevented and

recommend revisiting the gas-free design.

I Alleviation

[Kaia, 11/27/2025]:

The team acknowledged the issue and decided not to implement the recommended change in the current engagement.

G cerTIK ASA-82 | ALPHASEC.-AUDIT

ASA-82 | Both TP Order And SL Orders Could Exist In Orderbook In
Some Edge Cases

Category Severity Location Status
Design) core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-6101af6): 6

| Medium 50 ® Resolved
ssue

I Description

Inthe Modifyorder() function, processOrderInternal() is used to match orders and generate trades. If a passive order

is marked as tpsl, a TP order may be created and added to the triggeredQueue via CreateTPSLForFilledOrder() .

However, during Modifyorder() , triggered TP orders may remain unprocessed in the queue when the function completes.
In rare cases, if a stop-loss condition is triggered before the queued TP order is handled, the SL order may enter the

orderbook while the corresponding TP order is still pending.

I Recommendation

Consider aligning the post-processing of Modifyorder() with ProcessOrder() .

I Alleviation

[Kaia, 11/27/2025]:

Issue acknowledged. Changes have been reflected in the commit 912bee211bc712425e6d9730f58b758f91c5b332 .

https://github.com/kaiachain/go-ethereum/commit/912bee211bc712425e6d9730f58b758f91c5b332

QY cerTIK ASA-83 | ALPHASEC.-AUDIT

ASA-83 ‘ TriggeredQueue Not Restored From Engine Snapshot

Category Severity Location Status
Coding . core/orderbook/v2/engine/symbol_engine.go (go-ethereum-6101af6):

Medium ® Resolved
Issue 1216~1270

I Description

The function RestoreFromSnapshot() restoresthe SymbolEngine state from a snapshot. While this function restores
orders, triggers, and OCO pairs, it does not restore the triggeredQueue in the engine.

I Recommendation

Ensure that triggeredQueue is persisted in the snapshot and restored properly.

I Alleviation

[Kaia, 11/27/2025]:
Issue acknowledged. Changes have been reflected in the commit 912bee211bc712425e6d9730f58b758f91c5b332.

https://github.com/kaiachain/go-ethereum/commit/912bee211bc712425e6d9730f58b758f91c5b332

G cerTIK ASA-84 | ALPHASEC.-AUDIT

ASA-84 | Incorrect Value Copy During Aggregation Leads To Erroneous
Market Depth

Category Severity Location Status
Logical) core/orderbook/v2/book/orderbook.go (go-ethereum-6101af6): 340~3

| Medium 5o ® Resolved
ssue

I Description

The aggregateorders() function incorrectly copies PriceLevel structs by value into its result slice. Subsequent updates
to the same price level, meant to aggregate order quantities, modify the original struct via a pointer map but fail to update the

copy in the slice.

I Recommendation

It's recommended to ensure the final slice is constructed from the fully aggregated data, not from intermediate copies.

I Alleviation

[Kaia, 11/22/2025]:

Issue acknowledged. Changes have been reflected in the commit daed179ce5dc70cefd910867ee86fag075cl96ac .

https://github.com/kaiachain/go-ethereum/commit/da0d179ce5dc70cefd910867ee86fa9075c196ac

G cerTIK ASA-85 | ALPHASEC.-AUDIT

ASA-85 | Non-Atomic TPSL Creation Can Lead To Orphaned Orders And
Inconsistent State

Category Severity Location Status
Logical) core/orderbook/v2/conditional/manager.go (go-ethereum-6101af6): 69

| Medium 148 ® Resolved
ssue ~

I Description

The createTPSLForFilledorder() function establishes a TPSL setup in a multi-step, non-atomic sequence.

I Recommendation

Recommend refactoring the TPSL creation process to be atomic.

I Alleviation

[Kaia, 11/25/2025]:

Issue acknowledged. Changes have been reflected in the commit dbbfa5671b05de6d362f3e6e12e2c91dcd76b3be .

https://github.com/kaiachain/go-ethereum/commit/dbbfa5671b05de6d362f3e6e12e2c91dcd76b3be

G cerTiK ASA-86 | ALPHASEC.-AUDIT

ASA-86 | Funds Unlocked Before Order Removal In
handleCancelAllRequest ()

Category Severity Location Status
Volatile Code, Denial of core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-

) Medium ® Resolved
Service 6101af6): 560, 574~575

I Description

The handleCancelAllRequest() is intended to handle the request to cancel all the orders from the user (L10wner). If an
error occurs during the order cancellation step, some orders may remain in the orderbook even though their previously

locked tokens have already been unlocked.

I Recommendation

Recommend refactoring the logic so that orders are cancelled first, and tokens are unlocked only for those orders that have
been successfully cancelled.

I Alleviation

[Kaia, 11/23/2025]:

Issue acknowledged. Changes have been reflected in the commit 6faedee3c1d900871dbdage1f1860f9e24515ccc and

370ed4b3d95c612d87087298cb191c4ead6ff660 .

https://github.com/kaiachain/go-ethereum/commit/6faedee3c1d900871dbda8e1f1860f9e24515ccc
https://github.com/kaiachain/go-ethereum/commit/370ed4b3d95c612d87087298cb191c4ea46ff660

G cerTIK ASA-100 | ALPHASEC. - AUDIT

ASA-100 | Potential Exploitation Of SL Market Orders Via Extreme Price
Updates

Category Severity Location Status

Desi core/orderbook/v2/engine/symbol_engine.go (go-ethereum-6101af6):
esign
Minor 947~959; core/orderbook/v2/matching/price_time_priority.go (go-ethe Acknowledged

reum-6101af6): 38~39

Issue

I Description

After an order is processed, its price may be updated. The updated price can trigger stop-loss (SL) orders, which are added

tothe triggerQueue for the next processing round. Market SL orders are executed immediately against the oOrderBook .

I Recommendation

Consider implementing protections to prevent extreme-price orders from being accepted or processed.

I Alleviation

[Kaia, 11/21/2025]:

The team acknowledged the issue and decided not to implement the recommended change in the current engagement

G cerTIK ASA-101 | ALPHASEC. - AUDIT

ASA-101 | Unsynchronized And Unvalidated Metadata Persistence In
Stop() Causes WAL Inconsistency

Category Severity Location Status
Logical core/orderbook/v2/persistence/wal_manager.go (go-ethereum-6101af6):

Minor ® Resolved
Issue 95~114

I Description

The WALManager tracks the last written WAL sequence (w.currentSequence) and block number (w.currentBlock) in
memory and persists them to the database under metadata keys. However, saveMetadata() neither acquires w.mu (the

primary mutex guarding state updates), nor validates that a WAL entry for w.currentSequence actually exists on disk.

I Recommendation

Validate before persisting to ensure that the WAL entry for w.currentSequence exists.

I Alleviation

[Kaia, 11/13/2025] :

Issue acknowledged. Changes have been reflected in the commit 5a258ef8f271f48f5d57b03f95e88f5ea3a9281f .

https://github.com/kaiachain/go-ethereum/commit/5a258ef8f271f48f5d57b03f95e88f5ea3a9281f

G cerTIK ASA-102 | ALPHASEC. - AUDIT

ASA-102 ‘ Potential Overflow Leads To Panic With MustFromBig()

Category Severity Location Status

Volatile Code Minor precompiles/ArbTokenlssuer.go (dex-core-188b108): 65, 103, 132 ® Resolved

I Description

The input amount passed into the function Mint() and Burn() misses the overflow check. The MustFromBig() panics
ifthe big.Int inputis overflowed.

I Recommendation

Recommend adding the overflow check to prevent unexpected panic.

I Alleviation

[Kaia, 11/12/2025]:

Issue acknowledged. Changes have been reflected in the commit 9e44da91d3035c6d19433833ae3fa72f34823eea .

https://github.com/kaiachain/kaia-orderbook-dex-core/commit/9e44da91d3035c6d19433833ae3fa72f34823eea

G cerTIK ASA-103 | ALPHASEC. - AUDIT

ASA-103 ‘ Insufficient Constraint On Data Size

Category Severity Location Status

Volatile Code Minor precompiles/ArbTokenlssuer.go (dex-core-188b108): 218, 342 ® Resolved

I Description

The following code of data parse only checks that the length of remaining data is no less than the current position plus the
data length. If the data length correctly encodes the size of the data, then the check is supposed to be equality.

I Recommendation

Recommend changing the check to equality.

I Alleviation

[Kaia, 11/12/2025]:

Issue acknowledged. Changes have been reflected in the commit 77c7fc563c8d4280fh0ecf4f253cheb8f193ccha .

https://github.com/kaiachain/kaia-orderbook-dex-core/commit/77c7fc563c8d4280fb0ecf4f253cbeb8f193cc6a

G cerTiK ASA-104 | ALPHASEC. - AUDIT

ASA-104 ‘ Expired Session Wallet Does Not Fall

Category Severity Location Status

Inconsistency Minor core/types/transaction.go (go-ethereum-6101af6): 459 ® Resolved

I Description

All dex command transaction invokes the function VvalidateDexCommand() , which validates the sender matches one of the
session wallet. However, it only logs the error when the session wallet is expired, instead of returning error.

I Recommendation

Recommend propagating the error so that expired session wallet cannot submit transaction on behalf of I1owner.

I Alleviation

[Kaia, 11/12/2025]:

Issue acknowledged. Changes have been reflected in the commit 4bae8074e93013dff7942fel84ec527c7ch961dd .

https://github.com/kaiachain/go-ethereum/commit/4bae8074e93013dff7942fe184ec527c7cb961dd

G cerTIK ASA-105 | ALPHASEC. - AUDIT

ASA-105 ‘ Missing Nonzero Check Of Input data

Category Severity Location Status

Volatile Code Minor precompiles/ArbTokenlssuer.go (dex-core-188b108): 341 Acknowledged

I Description

The function parseEncodedBytes() is intended to parse the name and symbol of the ERC20 metadata, while it does not
check the string length of such bytes are nonzero.

I Recommendation

Recommend adding the nonzero check to prevent unexpected results.

I Alleviation

[Kaia, 11/12/2025]:

The team acknowledged the issue and decided not to implement the recommended change in the current engagement.

G cerTIK ASA-106 | ALPHASEC. - AUDIT

ASA-106 | Dispatcher Panics On Shutdown If New Requests Arrive After

Stop()
Category Severity Location Status
Denial of Service, Volatile core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-6
Minor ® Resolved
Code 101af6): 111, 132

I Description

The Dispatcher.Stop() cancels the dispatcher context and closes requestChan . Any concurrent call to
Dispatcher.DispatchReq() that races after the close still executes the select; the send case d.requestChan <- req is

chosen immediately, but sending on a closed channel panics.

I Recommendation

Ensure DispatchReq() refuses new requests once Stop() begins instead of sending to a closed channel.

I Alleviation

[Kaia, 11/23/2025]:

Issue acknowledged. Changes have been reflected in the commit c4abd026c522d93652744806490fcc2af25b18c9 .

https://github.com/kaiachain/go-ethereum/commit/c4abd026c522d93652744806490fcc2af25b18c9

G cerTIK ASA-107 | ALPHASEC. - AUDIT

ASA-107 | Missing LockedAmount In Deep Copy Method cCopy() Of

Order
Category Severity Location Status
Volatile Code, . core/orderbook/v2/types/order.go (go-ethereum-6101af6):
) Minor ® Resolved
Inconsistency 233

I Description

The copy() method of order is intended to perform a deep copy, but it misses the field LockedAmount .

I Recommendation

Recommend deep copying LockedAmount inthe Copy() method of order .

I Alleviation

[Kaia, 11/23/2025]:

Issue acknowledged. Changes have been reflected in the commit 80116d4dab9868f25de9c22b17cel16b34796220b .

https://github.com/kaiachain/go-ethereum/commit/80116d4dab9868f25de9c22b17ce16b34796220b

G cerTIK ASA-108 | ALPHASEC. - AUDIT

ASA-108 ‘ validate() Misses Validation Of orderMode

Category Severity Location Status
Volatile Code, core/types/tx_input.go (go-ethereum-6101af6): 192, 667,

. Minor ® Resolved
Inconsistency 978

I Description

The orderMode in OrderContext , ModifyContext and StopOrderContext is supposed to be either O (base mode
(default)) or 1 (quote mode), but there is no validation to ensure that.

I Recommendation

Recommend adding the validation of orderMode to ensure a malformed order will be rejected.

I Alleviation

[Kaia, 11/25/2025]:

Issue acknowledged. Changes have been reflected in the commit 9bboaff6f200422ec6deca74f69fb48d9af16020 .

https://github.com/kaiachain/go-ethereum/commit/9bb0aff6f200422ec6deca74f69fb48d9af16020

G cerTiK ASA-109 | ALPHASEC. - AUDIT

ASA-109 | Missing Validation Of Existing Order In validate() Of

ModifyContext
Category Severity Location Status
Volatile Code, Inconsistency Minor core/types/tx_input.go (go-ethereum-6101af6): 667 ® Resolved

I Description

According to the logic in Dispatcher.handleModifyRequest() , the modified order should not contain TPSL and must be a
LIMIT order. However, there is no validation on the existing order.

I Recommendation

Recommend adding these validation to reject the malformed transaction.

I Alleviation

[Kaia, 11/23/2025]:

Issue acknowledged. Changes have been reflected in the commit ea995eab197e39cd438a25c8dcedf05calfs5f7ca .

https://github.com/kaiachain/go-ethereum/commit/ea995eab197e39cd438a25c8dcedf05ca1f5f7c4

G cerTIK ASA-110 | ALPHASEC. - AUDIT

ASA-110 | Incorrect Order Of Return Values In
GetOrderbookSnapshot ()

Category Severity Location Status
Logical core/orderbook/v2/engine/symbol_engine.go (go-ethereum-6101af6): 10

| Minor 81 ® Resolved
ssue

I Description

In the function GetorderbookSnapshot() , orderbook.GetDepth() returns (bids, asks), but the engine assigns it as (asks,
bids).

I Recommendation

Recommend correcting the variable assignments in the GetorderbookSnapshot() function to ensure bids and asks are

assigned in the proper order.

I Alleviation

[Kaia, 11/21/2025]:

Issue acknowledged. Changes have been reflected in the commit 9897543b4bcec2bfdff064941f0e5h3588076ccO .

https://github.com/kaiachain/go-ethereum/commit/9897543b4bcec2bfdff064941f0e5b3588076cc0

G cerTIK ASA-111 | ALPHASEC. - AUDIT

ASA-111 ‘ Non-Determinism Due To Map Iteration

Category Severity Location Status

core/orderbook/v2/balance/manager.go (go-ethereum-6101af

6): 280, 808; core/orderbook/v2/book/orderbook.go (go-ethereu
Volatile Code,)
) Minor m-6101af6): 562; core/orderbook/v2/tpsl/oco_controller.go (go- Acknowledged
Inconsistency .
ethereum-6101af6): 280; core/orderbook/v2/tpsl/trigger_manag

er.go (go-ethereum-6101af6): 154, 221, 262

I Description

Go randomises map iteration order, so every call can return the slice in a different order. In the linked places, the map
iteration without sorting the keys.

I Recommendation

Recommend performing an extra sorting to ensure deterministic results.

I Alleviation

[Kaia, 11/23/2025]:

Issue acknowledged. | will fix the issue in the future, which will not be included in this audit engagement.

G cerTIK ASA-112 | ALPHASEC. - AUDIT

ASA-112 | Time-Nonce Validation Could Possibly Be Bypassed In
timeNonceDriftAcceptable()

Category Severity Location Status
Inconsistency, Volatile execution/gethexec/time_nonce.go (dex-core-188b108):

Minor ® Resolved
Code 26

I Description

The timeNonceDriftAcceptable() function is intended to validate the time nonce is within drift window. The input
txNonce multiplies the millisecond nonce in signed int64 before feeding itto time.unix . Any nonce that overflows after

multiplication, yet lands on exactly the same txTime as the honest timestamp.

I Recommendation

Reject out-of-range inputs before doing the multiplication.

I Alleviation

[Kaia, 11/24/2025]:

Issue acknowledged. Changes have been reflected in the commit b533a8060ba3b0f449eea2caa8fOcdch70445094 .

https://github.com/kaiachain/kaia-orderbook-dex-core/commit/b533a8060ba3b0f449eea2caa8f0cdcb70445094

G cerTIK ASA-113 | ALPHASEC. - AUDIT

ASA-113 | Missing Validation Of Existing Order In validate() Of

CancelAllContext
Category Severity Location Status
Volatile Code Minor core/types/tx_input.go (go-ethereum-6101af6): 635 ® Resolved

I Description

Unlike the validate() of cancelContext ,the validate() of CancelAllContext does not validate whether the

Liowner has any existing order.
I Recommendation
Recommend adding the validation to ensure the Liowner has existing order to prevent the execution of these spam
transactions.

I Alleviation

[Kaia, 11/27/2025]:

Issue acknowledged. Changes have been reflected in the commit dac83203ac2987a1cf3b694f36888d54acfe7bf2 .

https://github.com/kaiachain/go-ethereum/commit/dac83203ac2987a1cf3b694f36888d54acfe7bf2

G cerTiK ASA-114 | ALPHASEC. - AUDIT

ASA-114 | Missing Deep Copy Of Order Information In
CreateModifiedOrder ()

Category Severity Location Status
Volatile core/orderbook/v2/engine/symbol_engine.go (go-ethereum-54ccff3): 654

Minor ® Resolved
Code ~658, 664, 669

I Description

CreateModifiedorder () builds the replacement order before the old order is cancelled, but it doesn'’t clone any of the
numeric fields it copies from existingorder .
I Recommendation

Recommend performing deep copy of the values to the new order in CreateModifiedOrder() .

I Alleviation

[Kaia, 11/30/2025]:

Issue acknowledged. Changes have been reflected in the commit 534acb0c7686016b9fad193e07a7ad0998934810 .

https://github.com/kaiachain/go-ethereum/commit/534acb0c7686016b9fad193e07a7ad0998934810

G cerTIK ASA-115 | ALPHASEC. - AUDIT

ASA-115 ‘ Async Delta Loss Due To Premature Dirty-Flag Reset

Category Severity Location Status

) core/orderbook/v2/persistence/delta_writer.go (go-ethereum-
Volatile Code,) .
Minor 54ccff3): 110; core/orderbook/v2/persistence/manager.go (g Acknowledged

Inconsistency
o-ethereum-54ccff3): 225~232

I Description

PersistenceManager.0nBlockend() enqueues each block’s DispatcherbDelta and immediately calls
dispatcher.ResetAllDirtyTracking() .Any crash between enqueueing the delta and the writer’s disk flush permanently

drops that block’s mutations from persistence.

I Recommendation

Defer dispatcher.ResetAllDirtyTracking() until the delta write completes.

I Alleviation

[Kaia, 11/30/2025]:

The team acknowledged the issue and decided not to implement the recommended change in the current engagement.

G cerTIK ASA-126 | ALPHASEC. - AUDIT

ASA-126 | Non-Atomic Lock Consumption Can Leave Balances Patrtially
Consumed On Failure

Category Severity Location Status

Volatile Code Minor core/orderbook/v2/balance/settlement.go (go-ethereum-6101af6): 139 ® Resolved

I Description

verifyAndConsumeLocks () first checks both sides have sufficient locked balances, then calls ConsumeLock for the buyer,
and only afterwards calls ConsumeLock for the seller. If the seller consumption fails (e.g., due to concurrent updates, alias
resolution changes, or StateDB inconsistency), the function returns an error after the buyer lock has already been consumed.
The caller does not roll back the first consumption, leaving the system in an inconsistent state where part of the trade was

charged but assets were not delivered. This can result in user funds being consumed without settlement.

I Recommendation

Make the consumption of both locks atomic with rollback.

I Alleviation

[Kaia, 12/18/2025]:

Issue acknowledged. Changes have been reflected in the commit 95869593ed4b6f7691d92aea33fda066f7ec8460 and

67ecc7efaa3100b4d2a64ecd3b3c815169acda28 .

https://github.com/kaiachain/go-ethereum/commit/95869593ed4b6f7691d92aea33fda066f7ec8460
https://github.com/kaiachain/go-ethereum/commit/67ecc7efaa3100b4d2a64ecd3b3c815169acda28

G cerTIK ASA-127 | ALPHASEC. - AUDIT

ASA-127 | Discussion On Logged Settlement And OCO Failures Without
Proper Handling

Category Severity Location Status

core/orderbook/v2/conditional/manager.go (go-ethereum-9586959): 219
Inconsistency Minor ~221; core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-95869 @® Resolved
59): 286~289

I Description

e In processTradesAndCleanup() afailed settleTrade() islogged, butwe still CompleteOrder()/untrackOrder ()
filled legs; processSingleorderResult() will also finalize the taker on terminal status. So if settleTrade fails (nil
FeeRetriever, bad token IDs, StateDB error, etc.), orders are removed/unlocked and OCO/conditional flows continue even
though no asset transfers occurred, and verifyAndConsumelLocks may already have consumed locked balances with no

rollback.

« Similarly, when an SL trigger fires, conditional.Manager.CheckTriggers() removes the OCO pairvia Execute0CO()
and then calls the SymbolEngine.cancelOrderDirect() for each paired order. If the canceller returns an error (e.g., TP
not found), CheckTriggers() justlogs it; the pair is already removed, so the TP stays live with no OCO mapping and

both legs can execute.

I Recommendation

The audit team would like to know if the current behavior is by design. If not, recommend handling the error properly in these

corner cases.

I Alleviation

[Kaia, 12/18/2025]:

Issue acknowledged. Changes have been reflected in the commit 67ecc7efaa3100b4d2a64ecd3b3c815169acda28 and

6684a4643f55a916d84e48ddc633b2ede6df06e6 .

https://github.com/kaiachain/go-ethereum/commit/67ecc7efaa3100b4d2a64ecd3b3c815169acda28
https://github.com/kaiachain/go-ethereum/commit/6684a4643f55a916d84e48ddc633b2ede6df06e6

G cerTIK ASA-128 | ALPHASEC. - AUDIT

ASA-128 ‘ Missing Comparison Between SLLimit And SLTrigger

Category Severity Location Status

Logical Issue Minor core/types/tx_input.go (go-ethereum-9586959): 317~318 Acknowledged

I Description

There is no side-aware check in 'validate() of OrderContext that sLLimit (if not nil) is on the correct side of
SLTrigger .As aresult, a BUY can submit sLLimit above the trigger (or SELL below) and pass tx validation, leading to

an SL limit that's unlikely to execute when triggered.

I Recommendation

For sensible execution, sLLimit should be on the “exit” side of the trigger (BUY: < trigger; SELL: > trigger).

I Alleviation

[Kaia, 12/17/2025]:

Issue acknowledged. | won't make any changes for the current version.

G cerTIK ASA-129 | ALPHASEC. - AUDIT

ASA-129 ‘ Stale Depth From In-Place Order Mutation In UpdateOrder ()

Category Severity Location Status

Volatile Code Minor core/orderbook/v2/book/orderbook.go (go-ethereum-9586959): 149 ® Resolved

I Description

UpdateOrder() assumes it gets an untouched “old” order, but the matcher mutates the passive order in place before calling
it. Inside Updateorder() , oldOrder and order are the same pointer, so the code removes and re-adds the price level using
already-reduced quantities. The net effect on aggregated depth is zero: Level2 totals stay at the pre-fill amount even though

the queue entry shrank, producing stale depth data.

I Recommendation

Fetch and store a copy of the order’s previous state within UpdateOrder before applying any updates, ensuring aggregated
price levels are correctly updated and remain consistent with the underlying order queue.

I Alleviation

[Kaia, 12/18/2025]:

Issue acknowledged. Changes have been reflected in the commit 1bc200ae59862e658805ceh9e06281ae3e5f8304 .

https://github.com/kaiachain/go-ethereum/commit/1bc200ae59862e658805ceb9e06281ae3e5f8304

G cerTIK ASA-130 | ALPHASEC. - AUDIT

ASA-130 | TPSL Creation Failure Leaves Stale Pre-Registered TP/SL
Routes

Category Severity Location Status

)) core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-9586959): 63
Inconsistency Minor 3 ® Resolved

I Description

When createTPSLAfterSettlement() failsinside processConditionalPostSettlement() ,the code only logs the error
and appends FailedOrders but does not clean up the TP/SL order IDs that were pre-registered earlier via

preRegisterTPSL() .

I Recommendation

Recommend explicitly untracking the TP/SL IDs in the error branch of processConditionalPostSettlement() .

I Alleviation

[Kaia, 12/17/2025]:

Issue acknowledged. Changes have been reflected in the commit 31b34416d87ff07a5cabc218c7e56d751c0dan9o .

https://github.com/kaiachain/go-ethereum/commit/31b34416d87ff07a5cabc218c7e56d751c0da090

G cerTIK ASA-131 | ALPHASEC. - AUDIT

ASA-131 ‘ Market Orders Accept Negative Prices

Category Severity Location Status

Volatile Code Minor core/types/tx_input.go (go-ethereum-9586959): 400 ® Resolved

I Description

Negative market prices are not rejected during order validation and are instead converted to their two’s complement
representation via MustFromBig() .

I Recommendation

Recommend adding a check to reject the negative price.

I Alleviation

[Kaia, 12/16/2025]:

Issue acknowledged. Changes have been reflected in the commit 51ed57f9bb950ffb703951f094bc4fe2e73ceels .

https://github.com/kaiachain/go-ethereum/commit/51ed57f9bb950ffb703951f094bc4fe2e73cee18

G cerTIK ASA-87 | ALPHASEC.-AUDIT

ASA-87 | Order Lock Can Be Removed When oldorderID Equals
NewOrderID

Category Severity Location Status

. core/orderbook/v2/balance/manager.go (go-ethereum-6101af6): 716
Volatile Code,

Minor ~717; core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-61 ® Resolved
01af6): 650

Logical Issue

I Description

Inthe ModifyorderLock() function, the lock record is updated and then the old key is deleted. If oldorderID is the same
as neworder.orderID ,the delete() call removes the newly updated lock entry from m.locks .

I Recommendation

Consider updating ModifyorderLock to handle the same-ID scenario safely without deleting the lock.

I Alleviation

[Kaia, 11/04/2025]:

Issue acknowledged. Changes have been reflected in the commit e52e326a2b8070c658321d64€61787b56ceb2154 .

https://github.com/kaiachain/go-ethereum/commit/e52e326a2b8070c658321d64e61787b56ceb2154

G cerTIK ASA-88 | ALPHASEC.-AUDIT

ASA-88 | Missing Nil Pointer Check In copy() Of

ValueTransferContext

Category Severity Location Status

Volatile Code, Coding Issue Minor core/types/value_transfer.go (go-ethereum-6101af6): 56 ~ ® Resolved

I Description

The copy() function of valueTransferContext misses the nil pointer check of its field, value , which could possibly lead
to dereference panic when invoking s.value.Bytes() .

I Recommendation

Recommend adding a nil pointer check of s.value before calling its method Bytes() .

I Alleviation

[Kaia, 11/04/2025]:

Issue acknowledged. Changes have been reflected in the commit a208e3da498cfechle60932a0fd45a424d4d51c8 .

https://github.com/kaiachain/go-ethereum/commit/a208e3da498cfecb1e60932a0fd45a424d4d51c8

G cerTIK ASA-89 | ALPHASEC.-AUDIT

ASA-89 ‘ Unsafe Internal Pointer Exposure Via GetBuyOrders()

Category Severity Location Status

core/orderbook/v2/book/orderbook.go (go-ethereum-6101af6): 204, 2

Logical) 12, 220, 228; core/orderbook/v2/queue/buy_queue.go (go-ethereum-
Minor Acknowledged
Issue 6101af6): 44, 82~87, 90~108; core/orderbook/v2/queue/sell_queue.g

0 (go-ethereum-6101af6): 44, 81~87, 90~108

I Description

The functions orderBook.GetBuyOrders() and buy_queue.GetOrdersSorted() expose internal order pointers
*types.Order directly to external callers. Although both functions attempt to return a “copy” of the internal slice, the copy

operation only performs a shallow copy.

I Recommendation

Return deep copies or detached value copies of internal order data rather than raw pointers.

I Alleviation

[Kaia, 11/23/2025]:

Issue acknowledged. Changes have been reflected in the commit f7851a97ebb5b22debbfdadi6a4866eebead165d .

https://github.com/kaiachain/go-ethereum/commit/f7851a97ebb5b22debbfdad16a4866eebea0165d

G cerTIK ASA90 | ALPHASEC.-AUDIT

ASA-90 | Order Quantity And Price Validation Uses Iszero() Instead Of
Sign() To Ensure Strict Positivity

Category Severity Location Status
Volatile) core/orderbook/v2/engine/symbol_engine.go (go-ethereum-6101af6): 98

Minor ® Resolved
Code 4~986, 989

I Description

Within the validateOrder() function, order.Quantity and order.price are oftype *uint256.Int .Using IsZero()
only detects if the value is exactly zero, and does not correctly validate that the quantity is strictly positive.

I Recommendation

Replace the quantity validation check to enforce strict positivity.

I Alleviation

[Kaia, 11/11/2025]:

Issue acknowledged. Changes have been reflected in the commit b14398fee3c66668fal1319b0a437c83a1126e530 .

https://github.com/kaiachain/go-ethereum/commit/b14398f0e3c66668fa1319b0a437c83a1126e530

G cerTIK ASA91 | ALPHASEC.-AUDIT

ASA-91 ‘ Reversed Conditional In TokenTransferContext.copy()

Category Severity Location Status

Logical Issue Minor core/types/tx_input.go (go-ethereum-6101af6): 96~98 ® Resolved

I Description

The TokenTransferContext.copy() function contains a reversed conditional check.

I Recommendation

Recommend correcting the conditional logic in the copy() function.

I Alleviation

[Kaia, 11/04/2025]:

Issue acknowledged. Changes have been reflected in the commit a208e3da498cfecble60932a0fd45a424d4d51c8 .

https://github.com/kaiachain/go-ethereum/commit/a208e3da498cfecb1e60932a0fd45a424d4d51c8

G cerTIK ASA92 | ALPHASEC.-AUDIT

ASA-92 ‘ Missing Copy Of LockedBalance In Copy() Of StateAccount

Category Severity Location Status

Inconsistency Minor core/types/state_account.go (go-ethereum-6101af6): 54 ® Resolved

I Description

The copy() function of StateAccount misses the copy of its field LockedBalance .

I Recommendation

Recommend adding the copy of LockedBalance .

I Alleviation

[Kaia, 11/11/2025]:

Issue acknowledged. Changes have been reflected in the commit 28837125a4cafe35af335b216580a70elb5eebila .

https://github.com/kaiachain/go-ethereum/commit/28837125a4cafe35af335b216580a70e1b5eeb1a

G cerTIK ASA93 | ALPHASEC.-AUDIT

ASA-93 ‘ Missing LockedBalance In Account

Category Severity Location Status

Inconsistency Minor core/types/account.go (go-ethereum-6101af6): 36 ® Resolved

I Description

The following 'Account struct misses the field LockedBalance thatwas declared inthe StateAccount to representthe
locked balance of Kaia token.

I Recommendation

Recommend adding the LockedBalance fieldto Account struct.

I Alleviation

[Kaia, 11/11/2025]:

Issue acknowledged. Changes have been reflected in the commit 28837125a4cafe35af335b216580a70elb5eebla .

https://github.com/kaiachain/go-ethereum/commit/28837125a4cafe35af335b216580a70e1b5eeb1a

G cerTIK ASA-94 | ALPHASEC.-AUDIT

ASA-94 ‘ Non-Deterministic MarshalJSON() Of Balances

Category Severity Location Status

Inconsistency Minor core/types/token_balance.go (go-ethereum-6101af6): 169 ® Resolved

I Description

The MarshalJson() of Balances utilizes the map iteration to append the elements in a slice, which could be non-
deterministic in Go.

I Recommendation

Recommend sorting the keys in the map to ensure deterministic marshal.

I Alleviation

[Kaia, 10/30/2025];

Issue acknowledged. Changes have been reflected in the commit 4faba41b9dde05fcac01dag7bb59h43459d75f01 .

https://github.com/kaiachain/go-ethereum/commit/4faba41b9dde05fcac01da87bb59b43459d75f01

G cerTIK ASA95 | ALPHASEC.-AUDIT

ASA-95 | Mutable Aliasing In Neworder () Allows Caller Modify
price/quantity/TPSL After Order Creation

Category Severity Location Status
Logical . core/orderbook/v2/types/order.go (go-ethereum-6101af6): 203~222; core/

Minor ® Resolved
Issue orderbook/v2/types/trade.go (go-ethereum-6101af6): 63~64

I Description

NewOrder () stores caller-provided pointers (price , quantity ,and TPSLContext) directly into the returned order
without cloning.
I Recommendation

Perform deep cloning of all mutable inputs inside Neworder() .

I Alleviation

[Kaia, 11/05/2025]:

Issue acknowledged. Changes have been reflected in commit 849a542130da9b3fe2dfced236e075823a9bbee2 .

https://github.com/kaiachain/go-ethereum/commit/849a542130da9b3fe2dfced236e075823a9bbee2

G cerTiK ASA96 | ALPHASEC.-AUDIT

ASA-96 ‘ FILLED Orders Can Be Reactivated

Category Severity Location Status

Logical Issue Minor core/orderbook/v2/types/order.go (go-ethereum-6101af6): 291~302 ® Resolved

I Description
UpdateStatus() treats only REJECTED , CANCELLED ,and EXPIRED as terminal and proceeds for all other statuses.
FILLED is aterminal status but is notincluded in the early-return guard of UpdateStatus() .

I Recommendation

Update the UpdateStatus() method to treat all terminal states, including FILLED .

I Alleviation

[Kaia, 11/05/2025]:

Issue acknowledged. Changes have been reflected in commit 5d32e82f63b18c2397c4f267c780fee9bg23fef3 .

https://github.com/kaiachain/go-ethereum/commit/5d32e82f63b18c2397c4f267c780fee9b823fef3

G cerTIK ASA-97 | ALPHASEC.-AUDIT

ASA-97 | AllorNone OCO Strategy Incorrectly Implemented — Behaves
Same As OneCancelsOther

Category Severity Location Status

)) core/orderbook/v2/tpsl/interfaces.go (go-ethereum-6101af6): 110; core/
Inconsistency Minor ® Resolved
orderbook/v2/tpsl/oco_controller.go (go-ethereum-6101af6): 81, 91

I Description

Inthe canceloco() function, the implementation for the AllorNone strategy is identical to that of oneCancelsOther . Both
strategies currently skip cancelling the triggering order (if id != orderID), meaning that when one order in an AllOrNone pair

is manually cancelled, only the other orders are cancelled.

I Recommendation

Update the AllorNone casein canceloco() to cancel all orders, including the triggering one, by removing the condition if
id != orderID.

I Alleviation

[Kaia, 11/04/2025]:

Issue acknowledged. Changes have been reflected in the commit c8e5a9f81e37efed827aa7bff06e6e8be95983f4 .

https://github.com/kaiachain/go-ethereum/commit/c8e5a9f81e37efed827aa7bff06e6e8be95983f4

G cerTIK ASA98 | ALPHASEC.-AUDIT

ASA-98 ‘ Invalid State Transition In TPSLOrder .Cancel()

Category Severity Location Status
Logical core/orderbook/v2/types/conditional.go (go-ethereum-6101af6): 28

Minor Acknowledged
Issue 3~291

I Description

TPSLOrder.Cancel() unconditionally setsthe TPSL statusto CANCELLED and the SL child order’s status to CANCELLED

without validating the current state.

I Recommendation

Reject invalid state transition from TRIGGERED back to CANCELLED .

I Alleviation

[Kaia, 11/25/2025]: The team acknowledged the issue and decided not to implement the recommended change in the

current engagement.

G cerTIK ASA99 | ALPHASEC.-AUDIT

ASA-99 ‘ Missing Check In MakeTimeNonceError () Function

Category Severity Location Status
Logical Issue, execution/gethexec/time_nonce.go (dex-core-188b108):

. Minor ® Resolved
Inconsistency 35

I Description

The MakeTimeNonceError() function misses the check that Timestamp Nonce must always be greater than the current
state nonce, which is inconsistent with the design documentation.

I Recommendation

Recommend explicitly adding the check that Timestamp Nonce is greater than the state nonce.

I Alleviation

[Kaia, 11/25/2025]:

Issue acknowledged. Changes have been reflected in the commit @b956f6f8db99cfcfe7595bad340c917bd58b962 .

https://github.com/kaiachain/kaia-orderbook-dex-core/commit/0b956f6f8db99cfcfe7595bad340c917bd58b962

G cerTIK ASA-116 | ALPHASEC. - AUDIT

ASA-116 ‘ Incorrect fromAmount Logging In TransformLock() Function

Category Severity Location Status
Logical) core/orderbook/v2/balance/manager.go (go-ethereum-6101af6):

® Informational ® Resolved
Issue 775~784

I Description

Inthe TransformLock() function, the system logs the transformation details of a token lock (used in TPSL scenarios).
However, the function updates lock.Amount before writing the log entry.

I Recommendation

Preserve the original amount before overwriting it and use the preserved value in logs.

I Alleviation

[Kaia, 10/30/2025]:

Issue acknowledged. Changes have been reflected in commit f9eccifbd4e6366686b73b2c785bd145cc903ec4 .

https://github.com/kaiachain/go-ethereum/commit/f9ecc1fbd4e6366686b73b2c785bd145cc903ec4

QY cerTiK ASA-117 | ALPHASEC. - AUDIT

ASA-117 ‘ Incorrect Error Messages In validate()

Category Severity Location Status

core/types/tx_input.go (go-ethereum-6101af6): 120~125; core/ty
Inconsistency @ Informational ® Resolved
pes/value_transfer.go (go-ethereum-6101af6): 38~43
I Description

The following error messages are not accurately describing the previous condition:

e "amount must be positive" should be "amount must be non-negative”

e "price exceeds uint256 max value" should be "amount exceeds uint256 max value"

I Recommendation

Recommend correcting the error messages.

I Alleviation

[Kaia, 10/30/2025];

Issue acknowledged. Changes have been reflected in the commit ea11f988e6c0b721a62be5648096f97059452447 .

https://github.com/kaiachain/go-ethereum/commit/ea11f988e6c0b721a62be5648096f97b59452447

G cerTIK ASA-118 | ALPHASEC. - AUDIT

ASA-118 ‘ Discussion On Missing Metadata In Signing Message

Category Severity Location Status

Inconsistency @ Informational core/types/session.go (go-ethereum-6101af6): 124, 154~155 ® Resolved

I Description

The Session struct contains the Metadata field, while it's been ignored during the signing process when converting the

Session into signing message via ToTypedData() .

I Recommendation

The audit team would like to understand the design intention of the Metadata .

I Alleviation

[Kaia, 10/29/2025]:
Metadata field is not used for validation actually. Changes have been reflected in the commit

fecad4c6d0945fce@d24e7e8c317a65f323f1375 .

https://github.com/kaiachain/go-ethereum/commit/feca04c6d0945fce0d24e7e8c317a65f323f1375

G cerTIK ASA-119 | ALPHASEC. - AUDIT

ASA-119 ’ Discussion On Non-Functional WAL Manager Initialization

Category Severity Location Status

Lodical core/orderbook/v2/persistence/manager.go (go-ethereum-6101af
ogica
® Informational 6): 82~83; core/orderbook/v2/persistence/wal_manager.go (go-eth ~ ® Resolved

ereum-6101af6): 67~69

Issue

I Description

The persistence subsystem claims to provide Write-Ahead Logging (WAL) durability, but the WAL manager is never actually
started. In manager.Start() , the callto p.walManager.Start() iscommented out, meaning the WAL subsystem is never
initialized.

I Recommendation

The audit team would like to confirm with the team if this is an incomplete implementation.

I Alleviation

[Kaia, 11/12/2025]:
The relevant logics were removed from the codebase in the commit 5a258ef8f271f48f5d57b03f95e88f5ea3a9281f .

https://github.com/kaiachain/go-ethereum/commit/5a258ef8f271f48f5d57b03f95e88f5ea3a9281f

QY cerTiK ASA-120 | ALPHASEC. - AUDIT

ASA-120 ‘ Discussion On Logging Errors Without Return

Category Severity Location Status
Design Issue, . precompiles/ArbTokenlssuer.go (dex-core-188b108):

® Informational Acknowledged
Coding Issue 70~72, 92~94, 108~110, 142~145

I Description

Inthe Mint() and Burn() function, thereisno return after the errors occur. The contract logs failures from the
TokenTransfer / TokenRegistered emitters but then continues execution.

I Recommendation

The audit team would like to confirm with the team if this is an intended design.

I Alleviation

[Kaia, 11/10/2025]:

The team acknowledged the issue and decided not to implement the recommended change in the current engagement.

QY cerTiK ASA-121 | ALPHASEC. - AUDIT

ASA-121 ’ Discussion On Order Cleanup After Trade Settlement Failure

Category Severity Location Status
Coding) core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-6

® Informational Acknowledged
Issue 101af6): 263~269

I Description

When d.settleTrade(trade) fails, the processTradesAndCleanup() function proceeds to clean up orders associated
with that trade. This can result in passive orders being removed from cache or marked complete despite the trade not being
settled successfully. In some cases, these orders would otherwise have remained valid for future matches, leading to missing

trades and inconsistent orderbook states.

I Recommendation

According to the comment // Continue processing other trades even if one fails , this seems to be an intended
design. The audit team would like to confirm with the team has considered the above scenario.

I Alleviation

[Kaia, 11/24/2025]:

The team acknowledged the issue and decided not to implement the recommended change in the current engagement.

G cerTIK ASA-122 | ALPHASEC. - AUDIT

ASA-122 | Duplicate orderType Check In validate() Of
OrderContext And StopOrderContext

Category Severity Location Status

Code Optimization @ Informational core/types/tx_input.go (go-ethereum-6101af6): 220, 235 ® Resolved

I Description

The validate() function validates the orderContext and StopOrdercontext , which performs the duplication check of
OrderType .

I Recommendation

Recommend removing the second check for code readability and optimization.

I Alleviation

[Kaia, 11/22/2025]:

Issue acknowledged. Changes have been reflected in the commit 60f60d5de678745a6434e4bdc7f1c056fab03cd7 .

https://github.com/kaiachain/go-ethereum/commit/60f60d5de678745a6434e4bdc7f1c056fab03cd7

QY cerTiK ASA-123 | ALPHASEC. - AUDIT

ASA-123 | Discussion On Latest Traded Price Updated As Orderbook's

Price
Category Severity Location Status
Design) core/orderbook/v2/engine/symbol_engine.go (go-ethereum-
® Informational Acknowledged
Issue 6101af6): 388

I Description

During the order-matching process, the orderbook’s current price is updated based on the most recent executed trade.
Because this price may come from either a buy or a sell order, it can fluctuate significantly, especially when the orderbook

has low liquidity.

I Recommendation

The audit team would like to understand if this is an intended design or the average of sell and buy price and a TWAP price
should be utilized.

I Alleviation

[Kaia, 11/27/2025]:

The team acknowledged the issue and decided not to implement the recommended change in the current engagement.

QY cerTiK ASA-124 | ALPHASEC. - AUDIT

ASA-124 ‘ Discussion On Incomplete Stage Logic

Category Severity Location Status

core/orderbook/v2/pipeline/locking_stage.go (go-ethereum-61

01af6): 13~34; core/orderbook/v2/pipeline/matching_stage.go

Coding) (go-ethereum-6101af6): 11~38; core/orderbook/v2/pipeline/qu
® Informational Acknowledged

Issue eue_update_stage.go (go-ethereum-6101af6): 11~51; core/or

derbook/v2/pipeline/settlement_stage.go (go-ethereum-6101af

6): 11~39

I Description

The current implementation of the MatchingStage/LockingStage/QueueUpdateStage/SettlementStage are not production-
ready and introduces several architectural and correctness concerns. While the stage structure is defined, the critical logic for

state processing is commented as TODO.

I Recommendation

The audit team kindly requests further context to better understand the current implementation.

I Alleviation

[Kaia, 11/21/2025]:

The team acknowledged the issue and decided not to implement the recommended change in the current engagement.

G cerTIK ASA132 | ALPHASEC. - AUDIT

ASA-132 ‘ Missing Checks In copy() Of StopOrder And TPSLOrder

Category Severity Location Status
Volatile core/orderbook/v2/types/conditional.go (go-ethereum-9586959):

® Informational ® Resolved
Code 140, 294

I Description

e The sStopoOrder.Copy() unconditionally calls s.StopPrice.Clone() without nil check.

e The TPSLOrder.Copy() blindly calls t.sLorder.Copy() and t.SLTriggerPrice.Clone() without nil checks, and it
drops UserID .

I Recommendation

Recommend adding nil checks and UserID to TPSLOrder .

I Alleviation

[Kaia, 12/19/2025]:

Issue acknowledged. Changes have been reflected in the 8lela4296eblal3ee2e8f695b0d62ff55d6ag8a4f .

https://github.com/kaiachain/go-ethereum/commit/81e1a4296eb1a13ee2e8f695b0d62ff55d6a8a4f

G cerTIK ASA-133 | ALPHASEC. - AUDIT

ASA-133 ‘ Missing Nil Check Of Trade In processTradesAndCleanup()

Category Severity Location Status
Volatile core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-95869

® Informational ® Resolved
Code 59): 285

I Description

Nil trade would lead to nil dereference via trade.IsBuyerMaker though it should not occur during normal operation.

I Recommendation

Recommend adding the nil pointer check.

I Alleviation

[Kaia, 12/19/2025]:

Issue acknowledged. Changes have been reflected in the 8lela4296eblal3ee2e8f695b0d62ff55d6ag8a4f .

https://github.com/kaiachain/go-ethereum/commit/81e1a4296eb1a13ee2e8f695b0d62ff55d6a8a4f

QY cerTiK ASA67 | ALPHASEC.-AUDIT

ASA-67 ‘ Discussion On Any Token That Is Pre-Registered

Category Severity Location Status
Logical Issue, . precompiles/ArbTokenlssuer.go (dex-core-188b

. @ Informational Acknowledged
Inconsistency 108): 96~101

I Description

ArbTokenIssuer.Mint() function logs “L2Contract mapping added to existing token” but never verifies that a mapping
exists; it immediately adds balances for that tokenId .

I Recommendation

The audit team would like to confirm with the team whether this is the intended design.

I Alleviation

[Kaia, 12/02/2025]:

Issue acknowledged. | will fix the issue in the future, which will not be included in this audit engagement.

G cerTIK APPENDIX | ALPHA SEC. - AUDIT

APPENDIX ‘ ALPHA SEC. - AUDIT

I Audit Scope

kaiachain/go-ethereum

B core/orderbook/v2/balance/manager.go

B core/orderbook/v2/book/orderbook.go

B core/orderbook/v2/dispatcher/dispatcher.go

B core/orderbook/v2/engine/symbol_engine.go

B core/orderbook/v2/matching/price_time_priority.go

B core/orderbook/v2/pipeline/locking_stage.go

B core/orderbook/v2/pipeline/matching_stage.go

B core/orderbook/v2/pipeline/queue_update_stage.go

B core/orderbook/v2/pipeline/settlement_stage.go

B core/orderbook/v2/queue/buy queue.go

B core/orderbook/v2/queue/sell_queue.go

B core/orderbook/v2/tpsl/oco_controller.go

B core/orderbook/v2/tpslitrigger_manager.go

B core/orderbook/v2/types/conditional.go

B core/orderbook/v2/persistence/delta_writer.go

B core/orderbook/v2/persistence/manager.go

B coreltypes/tx_input.go

B core/orderbook/v2/balance/settlement.go

B core/orderbook/v2/conditional/manager.go

@EER‘TIK

kaiachain/go-ethereum

core/orderbook/v2/persistence/manager.go

core/orderbook/v2/persistence/wal_manager.go

core/orderbook/v2/tpsl/interfaces.go

core/orderbook/v2/types/order.go

core/orderbook/v2/types/trade.go

core/types/account.go

core/types/session.go

core/types/token_balance.go

core/types/tx_input.go

core/orderbook/v2/engine/symbol_engine.go

core/orderbook/v2/book/orderbook.go

core/orderbook/v2/conditional/manager.go

core/orderbook/v2/dispatcher/dispatcher.go

core/orderbook/v2/types/conditional.go

core/orderbook/v2/interfaces/conditional.go

core/orderbook/v2/interfaces/core.go

core/orderbook/v2/interfaces/dispatcher.go

core/orderbook/v2/interfaces/market.go

core/orderbook/v2/interfaces/request.go

core/orderbook/v2/interfaces/response.go

core/orderbook/v2/metrics/metrics.go

core/orderbook/v2/system/system.go

APPENDIX | ALPHA SEC. - AUDIT

@CERTIK

kaiachain/go-ethereum

core/orderbook/v2/balance/scaled_math.go

core/orderbook/v2/persistence/recovery.go

core/orderbook/v2/persistence/serialization.go

core/orderbook/v2/persistence/snapshot_manager.go

core/orderbook/v2/pipeline/builder.go

core/orderbook/v2/pipeline/conditional_stage.go

core/orderbook/v2/pipeline/context.go

core/orderbook/v2/pipeline/event_generation_stage.go

core/orderbook/v2/pipeline/integration_example.go

core/orderbook/v2/pipeline/management_pipeline.go

core/orderbook/v2/pipeline/pipeline.go

core/orderbook/v2/pipeline/trading_pipeline.go

core/orderbook/v2/pipeline/validation_stage.go

core/orderbook/v2/tpsl/activation_rule.go

core/orderbook/v2/tpsl/triggers.go

core/orderbook/v2/types/balance.go

core/orderbook/v2/types/common.go

core/orderbook/v2/types/config.go

core/orderbook/v2/types/depth.go

core/orderbook/v2/types/errors.go

core/orderbook/v2/types/fee_retriever.go

core/orderbook/v2/types/market_rules.go

APPENDIX | ALPHA SEC. - AUDIT

@CERTIK

kaiachain/go-ethereum

core/orderbook/v2/types/price_helpers.go

core/orderbook/v2/types/request.go

core/orderbook/v2/types/snapshot.go

core/orderbook/v2/types/statedb.go

core/orderbook/v2/types/symbol.go

core/orderbook/v2/interfaces/conditional.go

core/orderbook/v2/interfaces/core.go

core/orderbook/v2/interfaces/dispatcher.go

core/orderbook/v2/interfaces/market.go

core/orderbook/v2/interfaces/request.go

core/orderbook/v2/interfaces/response.go

core/orderbook/v2/metrics/metrics.go

core/orderbook/v2/system/system.go

core/orderbook/v2/balance/manager.go

core/orderbook/v2/balance/scaled_math.go

core/orderbook/v2/balance/settlement.go

core/orderbook/v2/book/orderbook.go

core/orderbook/v2/conditional/manager.go

core/orderbook/v2/dispatcher/dispatcher.go

core/orderbook/v2/matching/price_time_priority.go

core/orderbook/v2/persistence/recovery.go

core/orderbook/v2/persistence/snapshot_manager.go

APPENDIX | ALPHA SEC. - AUDIT

@EER‘TIK

kaiachain/go-ethereum

core/orderbook/v2/pipeline/builder.go

core/orderbook/v2/pipeline/conditional_stage.go

core/orderbook/v2/pipeline/context.go

core/orderbook/v2/pipeline/event_generation_stage.go

core/orderbook/v2/pipeline/integration_example.go

core/orderbook/v2/pipeline/locking_stage.go

core/orderbook/v2/pipeline/management_pipeline.go

core/orderbook/v2/pipeline/matching_stage.go

core/orderbook/v2/pipeline/pipeline.go

core/orderbook/v2/pipeline/queue_update_stage.go

core/orderbook/v2/pipeline/settlement_stage.go

core/orderbook/v2/pipeline/trading_pipeline.go

core/orderbook/v2/pipeline/validation_stage.go

core/orderbook/v2/queue/buy_queue.go

core/orderbook/v2/queue/sell_queue.go

core/orderbook/v2/tpsl/activation_rule.go

core/orderbook/v2/tpsl/interfaces.go

core/orderbook/v2/tpsl/oco_controller.go

core/orderbook/v2/tpsl/trigger_manager.go

core/orderbook/v2/tpsli/triggers.go

core/orderbook/v2/types/balance.go

core/orderbook/v2/types/common.go

APPENDIX | ALPHA SEC. - AUDIT

@EER‘TIK

kaiachain/go-ethereum

core/orderbook/v2/types/conditional.go

core/orderbook/v2/types/config.go

core/orderbook/v2/types/depth.go

core/orderbook/v2/types/errors.go

core/orderbook/v2/types/fee_retriever.go

core/orderbook/v2/types/market_rules.go

core/orderbook/v2/types/order.go

core/orderbook/v2/types/price_helpers.go

core/orderbook/v2/types/request.go

core/orderbook/v2/types/snapshot.go

core/orderbook/v2/types/statedb.go

core/orderbook/v2/types/symbol.go

core/orderbook/v2/types/trade.go

core/types/account.go

core/types/token_balance.go

core/types/session.go

core/types/tx_input.go

core/orderbook/v2/interfaces/conditional.go

core/orderbook/v2/interfaces/core.go

core/orderbook/v2/interfaces/dispatcher.go

core/orderbook/v2/interfaces/market.go

core/orderbook/v2/interfaces/request.go

APPENDIX | ALPHA SEC. - AUDIT

@CERTIK

kaiachain/go-ethereum

core/orderbook/v2/interfaces/response.go

core/orderbook/v2/metrics/metrics.go

core/orderbook/v2/system/system.go

core/orderbook/v2/balance/manager.go

core/orderbook/v2/balance/scaled_math.go

core/orderbook/v2/balance/settlement.go

core/orderbook/v2/book/orderbook.go

core/orderbook/v2/conditional/manager.go

core/orderbook/v2/dispatcher/dispatcher.go

core/orderbook/v2/engine/symbol_engine.go

core/orderbook/v2/matching/price_time_priority.go

core/orderbook/v2/persistence/delta_writer.go

core/orderbook/v2/persistence/manager.go

core/orderbook/v2/persistence/recovery.go

core/orderbook/v2/persistence/snapshot_manager.go

core/orderbook/v2/pipeline/builder.go

core/orderbook/v2/pipeline/conditional_stage.go

core/orderbook/v2/pipeline/context.go

core/orderbook/v2/pipeline/event_generation_stage.go

core/orderbook/v2/pipeline/locking_stage.go

core/orderbook/v2/pipeline/management_pipeline.go

core/orderbook/v2/pipeline/matching_stage.go

APPENDIX | ALPHASEC. - AUDIT

- G cerTIK APPENDIX | ALPHA SEC. - AUDIT

kaiachain/go-ethereum

B core/orderbook/v2/pipeline/pipeline.go

B core/orderbook/v2/pipeline/queue_update_stage.go
B core/orderbook/v2/pipeline/settlement_stage.go
B core/orderbook/v2/pipeline/trading_pipeline.go
B core/orderbook/v2/pipeline/validation_stage.go
B core/orderbook/v2/queue/buy_queue.go

B core/orderbook/v2/queue/sell_queue.go

B core/orderbook/v2/tpsl/activation_rule.go

B core/orderbook/v2/tpsl/interfaces.go

B core/orderbook/v2/tpsl/oco_controller.go

B core/orderbook/v2/tpslitrigger_manager.go

B core/orderbook/v2/tpslitriggers.go

B core/orderbook/v2/types/balance.go

B core/orderbook/v2/types/common.go

B core/orderbook/v2/types/conditional.go

B core/orderbook/v2/types/config.go

B core/orderbook/v2/types/depth.go

B core/orderbook/v2/types/errors.go

B core/orderbook/v2/types/fee_retriever.go

B core/orderbook/v2/types/market_rules.go

B core/orderbook/v2/types/order.go

B core/orderbook/v2/types/price_helpers.go

@EER‘TIK

kaiachain/go-ethereum

core/orderbook/v2/types/request.go

core/orderbook/v2/types/snapshot.go

core/orderbook/v2/types/statedb.go

core/orderbook/v2/types/symbol.go

core/orderbook/v2/types/trade.go

core/types/account.go

core/types/token_balance.go

core/types/session.go

core/types/tx_input.go

core/orderbook/v2/interfaces/conditional.go

core/orderbook/v2/interfaces/core.go

core/orderbook/v2/interfaces/dispatcher.go

core/orderbook/v2/interfaces/market.go

core/orderbook/v2/interfaces/request.go

core/orderbook/v2/interfaces/response.go

core/orderbook/v2/metrics/metrics.go

core/orderbook/v2/system/system.go

core/orderbook/v2/balance/manager.go

core/orderbook/v2/balance/scaled_math.go

core/orderbook/v2/balance/settlement.go

core/orderbook/v2/engine/symbol_engine.go

core/orderbook/v2/matching/price_time_priority.go

APPENDIX | ALPHA SEC. - AUDIT

@CERTIK

kaiachain/go-ethereum

core/orderbook/v2/persistence/delta_writer.go

core/orderbook/v2/persistence/manager.go

core/orderbook/v2/persistence/recovery.go

core/orderbook/v2/persistence/snapshot_manager.go

core/orderbook/v2/pipeline/builder.go

core/orderbook/v2/pipeline/conditional_stage.go

core/orderbook/v2/pipeline/context.go

core/orderbook/v2/pipeline/event_generation_stage.go

core/orderbook/v2/pipeline/management_pipeline.go

core/orderbook/v2/pipeline/matching_stage.go

core/orderbook/v2/pipeline/pipeline.go

core/orderbook/v2/pipeline/queue_update_stage.go

core/orderbook/v2/pipeline/settlement_stage.go

core/orderbook/v2/pipeline/trading_pipeline.go

core/orderbook/v2/pipeline/validation_stage.go

core/orderbook/v2/pipeline/locking_stage.go

core/orderbook/v2/queue/buy_queue.go

core/orderbook/v2/queue/sell_queue.go

core/orderbook/v2/tpsl/activation_rule.go

core/orderbook/v2/tpsl/interfaces.go

core/orderbook/v2/tpsl/oco_controller.go

core/orderbook/v2/tpsl/trigger_manager.go

APPENDIX | ALPHA SEC. - AUDIT

@CER‘TIK

kaiachain/go-ethereum

core/orderbook/v2/tpsl/triggers.go

core/orderbook/v2/types/balance.go

core/orderbook/v2/types/common.go

core/orderbook/v2/types/config.go

core/orderbook/v2/types/depth.go

core/orderbook/v2/types/errors.go

core/orderbook/v2/types/fee_retriever.go

core/orderbook/v2/types/market_rules.go

core/orderbook/v2/types/order.go

core/orderbook/v2/types/price_helpers.go

core/orderbook/v2/types/request.go

core/orderbook/v2/types/snapshot.go

core/orderbook/v2/types/statedb.go

core/orderbook/v2/types/symbol.go

core/orderbook/v2/types/trade.go

core/types/account.go

core/types/token_balance.go

core/types/session.go

kaiachain/kaia-orderbook-dex-core

precompiles/ArbTokenlssuer.go

execution/gethexec/time_nonce.go

APPENDIX | ALPHA SEC. - AUDIT

- @EER‘TIK

APPENDIX | ALPHA SEC. - AUDIT

kaiachain/kaia-orderbook-dex-token-bridge-contracts

B contracts/tokenbridge/libraries/L2GatewayToken.sol

I Finding Categories

Categories Description

Coding Style

Coding Issue

Denial of

Service

Inconsistency

Volatile Code

Logical Issue

Design Issue

Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

improved to make the code more understandable and maintainable.

Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Denial of Service findings indicate that an attacker may prevent the program from operating correctly

or responding to legitimate requests.

Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue findings indicate general implementation issues related to the program logic.

Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

QY cerTiK DISCLAIMER | ALPHASEC. - AUDIT

DISCLAIMER | CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,
disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions
provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the
Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and
conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person
for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report
is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or
project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee
regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.
This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report
represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company
and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack
vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that
your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,
where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of
technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY
PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL
FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER
APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,
OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT
LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM
COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO
WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR
OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY
OTHER PERSON’'S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY
SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL
CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

QY cerTiK DISCLAIMER | ALPHASEC. - AUDIT

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’'S
REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,
APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR
RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE
CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK'S AGENTS MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR
CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO
LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND
MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS ARESULT OF THE USE OF ANY
CONTENT, OR (Il) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING
FROM CUSTOMER'’'S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR
CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY
OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO
CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY
IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT
CERTIK'S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE ATHIRD PARTY OR OTHER
BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO
SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH
SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE
BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,
SHALL BE ATHIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO
SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH
REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION
UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR
MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,
REGULATORY, OR OTHER ADVICE.

Elevating Your \Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is
the largest blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-
based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,
we're able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

000000

Alpha Sec€.~audit Security Assessment | CertiK Assessed on Dec 19th, 2025 | Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

