
CertiK Assessed on Dec 19th, 2025

Alpha Sec. - audit
Security Assessment

Executive Summary

Vulnerability Summary

0 Centralization
Centralization findings highlight privileged roles &

functions and their capabilities, or instances where the

project takes custody of users’ assets.

0 Critical

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

7 Major 7 Resolved
Major risks may include logical errors that, under

specific circumstances, could result in fund losses or

loss of project control.

13 Medium 12 Resolved, 1 Acknowledged Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

35 Minor 28 Resolved, 7 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

12 Informational 7 Resolved, 5 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY ALPHA SEC. - AUDIT

CertiK Assessed on Dec 19th, 2025

Alpha Sec. - audit

The security assessment was prepared by CertiK.

TYPES

DEX, Layer 2

ECOSYSTEM

EVM Compatible

METHODS

Manual Review, Static Analysis

LANGUAGE

Go, Solidity

TIMELINE

Preliminary comments published on 11/14/2025

Final report published on 12/20/2025

67
Total Findings

54
Resolved

0
Partially Resolved

13
Acknowledged

0
Declined

TABLE OF CONTENTS ALPHA SEC. - AUDIT

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Overview

Introduction

Architecture & Key Innovations

Architectural Overview

Key Innovations

Core Components & Workflows

Account Model & State Extensions

Command-Based Transaction System

Asset Bridging (ArbTokenIssuer)

Core Orderbook Workflow

Order Lifecycle & Processing Flow

Order States

Regular Order Flow

Conditional Order Flow

Persistence & State Recovery

Summary

Reference

Findings

ASA-125 : Missing Ownership Validation In Order Cancellation

ASA-68 : Unrestricted `Session.Metadata` Field Enables Potential DoS Attack

ASA-69 : TPSL Lock Logic May Fail Due To Premature Locking Of Unsettled Assets

ASA-70 : `GetOrdersSorted()` Corrupts Original Queue

ASA-71 : Market Order Locking Allows DoS Via Insufficient Balance

ASA-72 : Unbounded Wallet Sessions Enable Denial Of Service

ASA-73 : Missing Handling Of `FailedOrders` In `ModifyOrder()`

TABLE OF CONTENTS ALPHA SEC. - AUDIT

ASA-74 : Balance Manager Records Locks Even When State Locking Fails

ASA-75 : Inconsistent Order State Due To Incorrect Lock Amount Update

ASA-76 : Improper Locking Order (Race Condition) In `Lock()`

ASA-77 : Potential Transaction Bloat Attack Due To Trailing Bytes

ASA-78 : Ambiguous Quantity Semantics Between Quote And Base Tokens

ASA-79 : Lot-Size/Dust Validation Bypass For SELL Market Orders In Quote Mode After Lock Limiting

ASA-80 : Incorrect Unlock Identifier In `createTPSLOrders` May Cause Stuck TPSL Locks And Balance Inconsistency

ASA-81 : Discussion On Gas-Free Dex Commands Design That Enables Multi-Layer DoS

ASA-82 : Both TP Order And SL Orders Could Exist In Orderbook In Some Edge Cases

ASA-83 : TriggeredQueue Not Restored From Engine Snapshot

ASA-84 : Incorrect Value Copy During Aggregation Leads To Erroneous Market Depth

ASA-85 : Non-Atomic TPSL Creation Can Lead To Orphaned Orders And Inconsistent State

ASA-86 : Funds Unlocked Before Order Removal In `handleCancelAllRequest()`

ASA-100 : Potential Exploitation Of SL Market Orders Via Extreme Price Updates

ASA-101 : Unsynchronized And Unvalidated Metadata Persistence In `Stop()` Causes WAL Inconsistency

ASA-102 : Potential Overflow Leads To Panic With `MustFromBig()`

ASA-103 : Insufficient Constraint On Data Size

ASA-104 : Expired Session Wallet Does Not Fail

ASA-105 : Missing Nonzero Check Of Input `data`

ASA-106 : Dispatcher Panics On Shutdown If New Requests Arrive After `Stop()`

ASA-107 : Missing `LockedAmount` In Deep Copy Method `Copy()` Of `Order`

ASA-108 : `validate()` Misses Validation Of `OrderMode`

ASA-109 : Missing Validation Of Existing Order In `validate()` Of ModifyContext

ASA-110 : Incorrect Order Of Return Values In `GetOrderbookSnapshot()`

ASA-111 : Non-Determinism Due To Map Iteration

ASA-112 : Time-Nonce Validation Could Possibly Be Bypassed In `timeNonceDriftAcceptable()`

ASA-113 : Missing Validation Of Existing Order In `validate()` Of `CancelAllContext`

ASA-114 : Missing Deep Copy Of Order Information In `CreateModifiedOrder()`

ASA-115 : Async Delta Loss Due To Premature Dirty-Flag Reset

ASA-126 : Non-Atomic Lock Consumption Can Leave Balances Partially Consumed On Failure

ASA-127 : Discussion On Logged Settlement And OCO Failures Without Proper Handling

ASA-128 : Missing Comparison Between `SLLimit` And `SLTrigger`

ASA-129 : Stale Depth From In‑Place Order Mutation In `UpdateOrder()`

ASA-130 : TPSL Creation Failure Leaves Stale Pre-Registered TP/SL Routes

TABLE OF CONTENTS ALPHA SEC. - AUDIT

ASA-131 : Market Orders Accept Negative Prices

ASA-87 : Order Lock Can Be Removed When `oldOrderID` Equals `NewOrderID`

ASA-88 : Missing Nil Pointer Check In `Copy()` Of `ValueTransferContext`

ASA-89 : Unsafe Internal Pointer Exposure Via `GetBuyOrders()`

ASA-90 : Order Quantity And Price Validation Uses `IsZero()` Instead Of `Sign()` To Ensure Strict Positivity

ASA-91 : Reversed Conditional In `TokenTransferContext.copy()`

ASA-92 : Missing Copy Of `LockedBalance` In `Copy()` Of `StateAccount`

ASA-93 : Missing `LockedBalance` In `Account`

ASA-94 : Non-Deterministic `MarshalJSON()` Of `Balances`

ASA-95 : Mutable Aliasing In `NewOrder()` Allows Caller Modify `price/quantity/TPSL` After Order Creation

ASA-96 : FILLED Orders Can Be Reactivated

ASA-97 : `AllOrNone` OCO Strategy Incorrectly Implemented — Behaves Same As `OneCancelsOther`

ASA-98 : Invalid State Transition In `TPSLOrder.Cancel()`

ASA-99 : Missing Check In `MakeTimeNonceError()` Function

ASA-116 : Incorrect `fromAmount` Logging In `TransformLock()` Function

ASA-117 : Incorrect Error Messages In `validate()`

ASA-118 : Discussion On Missing `Metadata` In Signing Message

ASA-119 : Discussion On Non-Functional WAL Manager Initialization

ASA-120 : Discussion On Logging Errors Without Return

ASA-121 : Discussion On Order Cleanup After Trade Settlement Failure

ASA-122 : Duplicate `OrderType` Check In `validate()` Of `OrderContext` And `StopOrderContext`

ASA-123 : Discussion On Latest Traded Price Updated As Orderbook's Price

ASA-124 : Discussion On Incomplete Stage Logic

ASA-132 : Missing Checks In `Copy()` Of `StopOrder` And `TPSLOrder`

ASA-133 : Missing Nil Check Of Trade In `processTradesAndCleanup()`

ASA-67 : Discussion On Any Token That Is Pre-Registered

Appendix

Disclaimer

TABLE OF CONTENTS ALPHA SEC. - AUDIT

CODEBASE ALPHA SEC. - AUDIT

Repository

https://github.com/kaiachain/go-ethereum

https://github.com/kaiachain/kaia-orderbook-dex-core

https://github.com/kaiachain/kaia-orderbook-dex-core-contracts

https://github.com/kaiachain/kaia-orderbook-dex-token-bridge-contracts

Commit

6101af6996bf7b18cc86c89fae7bb0425663fc24

188b1089712be2a547433a584d1813f03e2ca6e8

6bb9e9eeeef6aabeccbef1f608618e1ea2f00737

5aed5069b5b13e120eae06a58a53303dece1ea33

Audit Scope

The file in scope is listed in the appendix.

CODEBASE ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum
https://github.com/kaiachain/kaia-orderbook-dex-core
https://github.com/kaiachain/kaia-orderbook-dex-core-contracts
https://github.com/kaiachain/kaia-orderbook-dex-token-bridge-contracts
https://github.com/kaiachain/go-ethereum/tree/6101af6996bf7b18cc86c89fae7bb0425663fc24
https://github.com/kaiachain/kaia-orderbook-dex-core/tree/188b1089712be2a547433a584d1813f03e2ca6e8
https://github.com/kaiachain/kaia-orderbook-dex-core-contracts/tree/6bb9e9eeeef6aabeccbef1f608618e1ea2f00737
https://github.com/kaiachain/kaia-orderbook-dex-token-bridge-contracts/tree/5aed5069b5b13e120eae06a58a53303dece1ea33

APPROACH & METHODS ALPHA SEC. - AUDIT

This audit was conducted for Kaia to evaluate the security and correctness of the smart contracts associated with the Alpha

Sec. - audit project. The assessment included a comprehensive review of the in-scope smart contracts. The audit was

performed using a combination of Manual Review and Static Analysis.

The review process emphasized the following areas:

Architecture review and threat modeling to understand systemic risks and identify design-level flaws.

Identification of vulnerabilities through both common and edge-case attack vectors.

Manual verification of contract logic to ensure alignment with intended design and business requirements.

Dynamic testing to validate runtime behavior and assess execution risks.

Assessment of code quality and maintainability, including adherence to current best practices and industry standards.

The audit resulted in findings categorized across multiple severity levels, from informational to critical. To enhance the

project’s security and long-term robustness, we recommend addressing the identified issues and considering the following

general improvements:

Improve code readability and maintainability by adopting a clean architectural pattern and modular design.

Strengthen testing coverage, including unit and integration tests for key functionalities and edge cases.

Maintain meaningful inline comments and documentations.

Implement clear and transparent documentation for privileged roles and sensitive protocol operations.

Regularly review and simulate contract behavior against newly emerging attack vectors.

APPROACH & METHODS ALPHA SEC. - AUDIT

OVERVIEW ALPHA SEC. - AUDIT

Introduction

The Alpha Sec. (Kaia Orderbook DEX) is a high-performance decentralized exchange (DEX) implemented as a protocol-

level extension on a customized Layer 2 (L2) chain. Its primary objective is to provide an on-chain orderbook trading

environment with low latency, high throughput, and minimal costs, rivaling the performance of centralized exchanges (CEX).

The project's core innovation lies in its protocol-native design philosophy. Unlike traditional DEXs built entirely on smart

contracts, Alpha Sec. integrates critical trade processing functions—such as order matching, balance management, and

conditional order handling—directly into the client execution logic of the Arbitrum Nitro L2 node (a fork of Geth). This design

allows computationally intensive operations to bypass the performance bottlenecks of the EVM, enabling significant

performance gains. The blockchain's role is transformed into a highly optimized, application-specific state machine, while

retaining the security guarantees provided by the Arbitrum Rollup framework.

To further optimize user experience and cater to high-frequency trading scenarios, the protocol introduces several

foundational account model extensions, including native multi-token accounts, session key delegation, and an enhanced

nonce mechanism.

The scope of current engagement mainly focuses on the following 3 components:

1. Orderbook Based Matching Engine

2. Deposit & Withdrawal Processing

3. Session Wallet Usage

Note: Per the Alpha Sec. team’s request, the current report has been redacted, including the sections covering the finding

description, potential scenarios, proof of concept, recommendations, and remediation details.

Architecture & Key Innovations

Architectural Overview

The Alpha Sec. employs a deeply integrated, layered architecture that moves core trading functions from the EVM

application layer down to the L2 protocol's execution layer. This design is intended to minimize overhead and enable direct,

high-efficiency communication between components. The system architecture can be divided into five logical layers:

Foundation Layer: Defines the core data structures (e.g., Order , Trade , StopOrder) and behavioral contracts

(interfaces) for the entire orderbook system.

Core Logic Layer: Contains the concrete implementations of the orderbook (OrderBook), priority queues

(Buy/SellQueue), and the matching algorithm (PriceTimePriority).

Business Logic Layer: Orchestrates the core logic components to form complete business functions. At this layer, the

SymbolEngine orchestrates matching, conditional order processing, and balance operations for each trading pair.

Persistence Layer: Manages the system's state snapshots and recovery logic, ensuring data consistency after a node

restart or crash.

OVERVIEW ALPHA SEC. - AUDIT

External Interface Layer: Serves as the system's main entry point. The Dispatcher at this layer manages all

SymbolEngine instances, handles asynchronous requests from users, and coordinates with the on-chain state and

balance management modules.

Key Innovations

The protocol achieves its core functionality through several key modifications to the underlying Arbitrum Nitro stack:

Protocol-Level Orderbook: Order matching logic is executed natively by the modified L2 node client (a fork of Geth)

rather than through EVM smart contracts. This allows order processing to avoid EVM overhead, aiming for ultra-low

latency.

Command-Based Transactions: Users' DEX operations (e.g., placing or canceling orders) are encoded as specific

commands, encapsulated within standard Ethereum transactions, and sent to a dedicated address (0x...cc) for

interception and native processing, without introducing new transaction types for DEX operations.

Unified Token System: The account state is extended at the protocol level to natively support balances for multiple

tokens. Internal asset transfers and trade settlements directly modify this underlying state, bypassing the EVM and

significantly reducing operational costs.

Session Delegation: Introduces temporary, time-limited "session keys" that allow users to grant one-time authorization

for continuous, high-frequency trading within a dApp, eliminating the need to sign every transaction and thus optimizing

the user experience.

Enhanced Nonce System: Combines the standard State Nonce with a Time Nonce, which is based on millisecond-level

timestamps and designed for session keys, to support high concurrency and a degree of out-of-order transaction

processing while maintaining security.

Core Components & Workflows

This section details the core components that constitute the Alpha Sec. and describes their roles and interactions in

processing the transaction lifecycle.

Account Model & State Extensions

To support the native orderbook functionality, the standard Ethereum account model has been extended at the protocol layer

with several key fields:

Balances (Native Multi-Token Balances): Each account contains a Balances structure to store the balances of

multiple native tokens. This structure implements a dual-balance system:

Available : Funds that can be used to place new orders or make transfers.

Locked : Margin that has been locked by active orders and cannot be used for other operations. This model is

managed by the balance.Manager module, which ensures atomic operations for balance changes during order

placement, settlement (including for partial fills), and cancellation.

Sessions (Session List): This supports the session key delegation feature. Each account can be associated with one

or more Session objects, each defining a delegated temporary public key (PublicKey) and its expiration (ExpiresAt

block number). Session lifecycle management is handled via SessionContext commands, which require an EIP-712

signature from the main account (L1Owner).

OVERVIEW ALPHA SEC. - AUDIT

TimeNonce (Timestamp Nonce List): This is a cache list designed to support high-concurrency transactions for session

keys. It stores recently used nonces, which are based on millisecond-level timestamps, to prevent replay attacks while

allowing for a degree of out-of-order transaction processing.

Command-Based Transaction System

All DEX-related operations are executed through a command system that leverages standard Ethereum transactions as

carriers.

Entry Point: A user sends a standard transaction to a predefined contract address 0x...cc .

Command Format: The transaction's Input Data is formatted as [Command Byte] + [Serialized Data] . The

Command Byte identifies the operation type, and the Serialized Data contains the specific parameters encoded in

JSON.

Core Commands:

SessionContext : Used to manage session keys.

ValueTransferContext : Used to execute internal L2 native token (Kaia) transfers.

TokenTransferContext : Used to execute internal L2 ERC20 token transfers.

OrderContext : Used to submit new orders, supporting limit, market, Base/Quote Mode, and optional TPSL

settings.

CancelContext / CancelAllContext : Used to cancel a single or all active orders.

ModifyContext : Used to modify the price or quantity of an existing order.

StopOrderContext : Used to submit standalone conditional orders.

Validation Flow: Before execution, every command is rigorously validated by the validate method defined in

tx_input.go . This includes checks for parameter sanity, business logic consistency (e.g., TPSL price relationships),

market rules (price/quantity precision), and user balances.

Asset Bridging (ArbTokenIssuer)

The deposit and withdrawal of assets are managed by a precompiled contract named ArbTokenIssuer , deployed at

address 0xdf .

Deposit (Mint):

1. When a user deposits an ERC20 token via the L1 gateway, an L1-to-L2 message triggers a call to the L2 gateway

contract.

2. The L2 gateway contract calls the mint function of the precompile.

3. The Go implementation of ArbTokenIssuer performs strict permission checks (verifying the caller's code hash

and the aliased address of the message sender) to ensure only messages from the official L1 gateway can

execute a mint.

4. For new tokens, the system automatically parses metadata from the calldata , registers the token, and emits a

TokenRegistered event.

OVERVIEW ALPHA SEC. - AUDIT

5. Finally, ArbTokenIssuer calls the StateDB interface to add the corresponding native balance to the user's

account and emits a TokenTransfer event with address(0) as the from address.

Withdrawal (Burn):

1. A user signs a transaction to call a withdrawal function on the L2 gateway contract.

2. The L2 gateway contract calls the burn function of the precompile.

3. ArbTokenIssuer verifies that the caller is an authorized gateway and, critically, validates that the transaction's

signer (msg.sender) is the owner of the account from which assets are being burned.

4. After checking for sufficient balance, ArbTokenIssuer calls the StateDB interface to subtract the native balance

from the user's account and emits a TokenTransfer event with address(0) as the to address, signaling the

L1 gateway to release the assets.

Core Orderbook Workflow

The orderbook system operates around a clear, layered architecture with the Dispatcher as the top-level coordinator.

1. Request Dispatching (Dispatcher): The Dispatcher receives all commands via an asynchronous request channel

(requestChan). Acting as the Balance Coordinator, it first calls the balance.Manager to pre-lock the margin for new

orders. It then routes the request to the appropriate SymbolEngine instance based on the order's trading pair (Symbol).

2. Per-Symbol Processing (SymbolEngine): The SymbolEngine serves as the business logic hub for a single trading

pair. It receives an order and invokes the matching.PriceTimePriority module (the matching algorithm). The matching

algorithm interacts with the book.OrderBook (the orderbook data structure) to perform matching and produce Trade

records. After matching, the SymbolEngine checks if any conditional orders (like Stop Orders) were triggered by the

latest trade price, or if a filled main order needs its associated TPSL to be activated. Triggered or activated orders are

placed into an internal triggered order queue and are processed iteratively in a BFS (Breadth-First Search) manner within

the same transaction to ensure atomicity of chained triggers.

3. Settlement: The SymbolEngine returns a list of generated Trade s to the Dispatcher . The Dispatcher iterates

through the Trade s and calls the balance.Manager 's SettleTrade function for each one. SettleTrade performs

the final clearing: it consumes the Locked balances of the buyer and seller, calculates and deducts fees, and then

credits the net amounts to the respective parties' Available balances. SettleTrade performs the final clearing, a

process that includes precise fee calculation and distribution.

Order Lifecycle & Processing Flow

Order processing in the Kaia DEX follows a well-defined, structured lifecycle designed to ensure atomicity, consistency, and

high performance.

Order States

An order progresses through several core states during its lifecycle:

NEW : The initial state when an order is created.

OVERVIEW ALPHA SEC. - AUDIT

PENDING : For a regular limit order, this state indicates the order has passed validation and is resting in the order book,

awaiting a match. For a conditional order (StopOrder , TPSL), this state indicates the order is waiting for the market

price to reach its trigger condition.

FILLED : The order has been fully executed.

PARTIALLY_FILLED : The order has been partially executed, with the remainder still resting in the order book.

CANCELED : The order was actively canceled by the user.

REJECTED : The order was rejected during order matching.

TRIGGERED : A conditional order's trigger condition has been met, and it is being converted into a regular order to enter

the matching flow.

TRIGGERED_WAIT : A conditional order's trigger condition has not been met yet.

Regular Order Flow

The processing flow for a regular limit or market order is as follows:

1. Validation: Upon receiving an OrderRequest , the Dispatcher performs initial validation as defined in tx_input.go ,

checking the command format and business logic.

2. Locking: After validation, the Dispatcher calls the balance.Manager to calculate and lock the user's margin for the

order (Available -> Locked).

3. Routing & Matching: The Dispatcher routes the order to the corresponding SymbolEngine . The SymbolEngine

invokes the matching.PriceTimePriority algorithm, which matches the incoming order (Taker) against existing

counter-party orders (Makers) in the OrderBook .

4. Conditional Check: After matching produces a new market price, the SymbolEngine calls the conditional.Manager

to check if any pending conditional orders (Stop or SL orders) have been triggered.

5. Settlement: The SymbolEngine returns the execution records (Trade s) to the Dispatcher . The Dispatcher then

calls balance.Manager.SettleTrade to perform clearing, which includes consuming the Locked balances of both

parties, calculating fees, and crediting the net amounts to their Available balances.

6. Queue Update: If the Taker order was a limit order and was not fully filled, its remaining portion is added to the

appropriate buy/sell queue in the OrderBook , becoming a new Maker order. The remainder of a market order is

canceled.

7. Post-processing: For orders that are fully filled or canceled, the balance.Manager releases any remaining locks, and

the Dispatcher cleans up the order's information from its internal caches.

TPSL Order (Attached Conditional Orders): The processing of a TPSL is a multi-stage activation flow that occurs after its

parent order is filled:

1. Activation: A main order with a TPSL field is fully filled (FILLED). The SymbolEngine detects this and calls the

conditional.Manager 's CreateTPSLForFilledOrder method.

2. Decomposition: The activation_rule module decomposes the TPSL context into two separate child orders, whose

quantities are set to the original quantity of the parent order:

Take-Profit (TP) Order: As a regular, opposite-side limit order.

OVERVIEW ALPHA SEC. - AUDIT

Stop-Loss (SL) Order: As a conditional order encapsulated in a StopLossTrigger .

3. Routing: The conditional.Manager routes the decomposed orders to different destinations via callbacks: The newly

created TP limit order is received by the orderProcessor callback and is placed directly into the main order book as an

active resting order. The newly created SL conditional order is registered with the triggerManager to await its price

trigger.

4. OCO Relationship Binding: The oco_controller module registers the "One-Cancels-the-Other" (OCO) relationship

between the TP and SL orders.

5. Execution & Finalization: Subsequently, when either the TP limit order is matched in the main orderbook or the SL

conditional order is triggered by price in the triggerManager , the oco_controller is invoked to automatically cancel

the other outstanding order, thus concluding the TPSL's lifecycle.

Conditional Order Flow

StopOrder (Standalone Conditional Order):

1. A user submits a StopOrderContext .

2. The Dispatcher validates it and fully locks the margin that would be required for its future execution.

3. The order is encapsulated into a StopOrderTrigger object and registered with the conditional.Manager ’s

triggerManager , entering the PENDING (conditional) state.

4. After each new trade occurs in the market, the SymbolEngine calls conditional.Manager.CheckTriggers with the

latest market price.

5. If the StopPrice is met, the triggerManager changes the StopOrderTrigger 's state to TRIGGERED , converts it into

a regular order, and places it in the SymbolEngine 's processing queue, where it enters the regular order flow.

Persistence & State Recovery

Orderbook v2 durability hinges on periodic full snapshots plus per-block deltas managed by PersistenceManager , written

via SnapshotManager / DeltaWriter , and replayed by RecoveryEngine so the dispatcher, engines, and balance locks

always return to their pre-crash state.

PersistenceManager.WriteSnapshot captures an immutable copy of all dispatcher + engine state at the configured

block interval and queues it for synchronous or async storage through SnapshotManager , based on the active

OrderbookConfig .

After each block, Dispatcher hands the block’s types.DispatcherDelta to DeltaWriter , which serializes it under

orderbook-delta-<block> ; sync mode writes immediately, while async mode batches via a background goroutine

before committing to ethdb .

On restart, RecoveryEngine.RecoverUpToBlock finds the most recent snapshot at or before the target height, restores

it via dispatcher.RestoreFromSnapshot, then streams every stored delta in order until the dispatcher reflects the

desired block.

Once replay completes, the dispatcher resumes live processing with the exact same order books, conditional queues,

and balance locks that existed before the outage, ensuring no accepted command is lost.

OVERVIEW ALPHA SEC. - AUDIT

Summary

The architecture of the Alpha Sec. presents a well-considered, protocol-native trading system designed for high performance

and low latency. By moving the core functionalities of an orderbook—such as matching, balance management, and

conditional orders—from the EVM application layer down to the L2 client's execution layer, the project aims to fundamentally

address the performance bottlenecks of traditional on-chain DEXs.

Overall, the Alpha Sec. architecture is a complex and deeply customized L2 solution. It deliberately trades some EVM

generality for ultimate performance in the specific domain of trading. Its workflows and component designs reflect an

adoption of modern centralized exchange architectural patterns, creatively combined with the decentralized nature of the

blockchain.

Reference

https://docs.alphasec.trade/

Internal design documentation

https://docs.arbitrum.io/get-started/overview

OVERVIEW ALPHA SEC. - AUDIT

https://docs.alphasec.trade/
https://docs.arbitrum.io/get-started/overview

FINDINGS ALPHA SEC. - AUDIT

This report has been prepared for Kaia to identify potential vulnerabilities and security issues within the reviewed codebase.

During the course of the audit, a total of 67 issues were identified. Leveraging a combination of Manual Review & Static

Analysis the following findings were uncovered:

ID Title Category Severity Status

ASA-125
Missing Ownership Validation In Order

Cancellation

Inconsistency,

Denial of Service
Major Resolved

ASA-68
Unrestricted Session.Metadata Field

Enables Potential DoS Attack
Denial of Service Major Resolved

ASA-69
TPSL Lock Logic May Fail Due To

Premature Locking Of Unsettled Assets
Logical Issue Major Resolved

ASA-70
GetOrdersSorted() Corrupts Original

Queue
Logical Issue Major Resolved

ASA-71
Market Order Locking Allows DoS Via

Insufficient Balance
Design Issue Major Resolved

ASA-72
Unbounded Wallet Sessions Enable

Denial Of Service
Denial of Service Major Resolved

ASA-73
Missing Handling Of FailedOrders In

ModifyOrder()

Inconsistency,

Logical Issue
Major Resolved

ASA-74
Balance Manager Records Locks Even

When State Locking Fails
Coding Issue Medium Resolved

ASA-75
Inconsistent Order State Due To Incorrect

Lock Amount Update
Coding Issue Medium Resolved

ASA-76
Improper Locking Order (Race Condition)

In Lock()
Logical Issue Medium Resolved

ASA-77
Potential Transaction Bloat Attack Due To

Trailing Bytes
Denial of Service Medium Resolved

FINDINGS ALPHA SEC. - AUDIT

67
Total Findings

0
Critical

0
Centralization

7
Major

13
Medium

35
Minor

12
Informational

ID Title Category Severity Status

ASA-78
Ambiguous Quantity Semantics Between

Quote And Base Tokens
Coding Style Medium Resolved

ASA-79

Lot-Size/Dust Validation Bypass For SELL

Market Orders In Quote Mode After Lock

Limiting

Logical Issue Medium Resolved

ASA-80

Incorrect Unlock Identifier In

createTPSLOrders May Cause Stuck

TPSL Locks And Balance Inconsistency

Inconsistency,

Logical Issue
Medium Resolved

ASA-81
Discussion On Gas-Free Dex Commands

Design That Enables Multi-Layer DoS

Design Issue, Denial

of Service
Medium Acknowledged

ASA-82
Both TP Order And SL Orders Could Exist

In Orderbook In Some Edge Cases
Design Issue Medium Resolved

ASA-83
TriggeredQueue Not Restored From

Engine Snapshot
Coding Issue Medium Resolved

ASA-84
Incorrect Value Copy During Aggregation

Leads To Erroneous Market Depth
Logical Issue Medium Resolved

ASA-85
Non-Atomic TPSL Creation Can Lead To

Orphaned Orders And Inconsistent State
Logical Issue Medium Resolved

ASA-86
Funds Unlocked Before Order Removal In

handleCancelAllRequest()

Volatile Code,

Denial of Service
Medium Resolved

ASA-100
Potential Exploitation Of SL Market Orders

Via Extreme Price Updates
Design Issue Minor Acknowledged

ASA-101

Unsynchronized And Unvalidated

Metadata Persistence In Stop() Causes

WAL Inconsistency

Logical Issue Minor Resolved

ASA-102
Potential Overflow Leads To Panic With

MustFromBig()
Volatile Code Minor Resolved

ASA-103 Insufficient Constraint On Data Size Volatile Code Minor Resolved

ASA-104 Expired Session Wallet Does Not Fail Inconsistency Minor Resolved

FINDINGS ALPHA SEC. - AUDIT

ID Title Category Severity Status

ASA-105 Missing Nonzero Check Of Input data Volatile Code Minor Acknowledged

ASA-106
Dispatcher Panics On Shutdown If New

Requests Arrive After Stop()

Denial of Service,

Volatile Code
Minor Resolved

ASA-107
Missing LockedAmount In Deep Copy

Method Copy() Of Order

Volatile Code,

Inconsistency
Minor Resolved

ASA-108
validate() Misses Validation Of

OrderMode

Volatile Code,

Inconsistency
Minor Resolved

ASA-109
Missing Validation Of Existing Order In

validate() Of ModifyContext

Volatile Code,

Inconsistency
Minor Resolved

ASA-110
Incorrect Order Of Return Values In

GetOrderbookSnapshot()
Logical Issue Minor Resolved

ASA-111 Non-Determinism Due To Map Iteration
Volatile Code,

Inconsistency
Minor Acknowledged

ASA-112

Time-Nonce Validation Could Possibly Be

Bypassed In

timeNonceDriftAcceptable()

Inconsistency,

Volatile Code
Minor Resolved

ASA-113
Missing Validation Of Existing Order In

validate() Of CancelAllContext
Volatile Code Minor Resolved

ASA-114
Missing Deep Copy Of Order Information

In CreateModifiedOrder()
Volatile Code Minor Resolved

ASA-115
Async Delta Loss Due To Premature Dirty-

Flag Reset

Volatile Code,

Inconsistency
Minor Acknowledged

ASA-126
Non-Atomic Lock Consumption Can Leave

Balances Partially Consumed On Failure
Volatile Code Minor Resolved

ASA-127
Discussion On Logged Settlement And

OCO Failures Without Proper Handling
Inconsistency Minor Resolved

ASA-128
Missing Comparison Between SLLimit

And SLTrigger
Logical Issue Minor Acknowledged

FINDINGS ALPHA SEC. - AUDIT

ID Title Category Severity Status

ASA-129
Stale Depth From In‑Place Order Mutation

In UpdateOrder()
Volatile Code Minor Resolved

ASA-130
TPSL Creation Failure Leaves Stale Pre-

Registered TP/SL Routes
Inconsistency Minor Resolved

ASA-131 Market Orders Accept Negative Prices Volatile Code Minor Resolved

ASA-87
Order Lock Can Be Removed When

oldOrderID Equals NewOrderID

Volatile Code,

Logical Issue
Minor Resolved

ASA-88
Missing Nil Pointer Check In Copy() Of

ValueTransferContext

Volatile Code,

Coding Issue
Minor Resolved

ASA-89
Unsafe Internal Pointer Exposure Via

GetBuyOrders()
Logical Issue Minor Acknowledged

ASA-90

Order Quantity And Price Validation Uses

IsZero() Instead Of Sign() To Ensure

Strict Positivity

Volatile Code Minor Resolved

ASA-91
Reversed Conditional In

TokenTransferContext.copy()
Logical Issue Minor Resolved

ASA-92
Missing Copy Of LockedBalance In

Copy() Of StateAccount
Inconsistency Minor Resolved

ASA-93 Missing LockedBalance In Account Inconsistency Minor Resolved

ASA-94
Non-Deterministic MarshalJSON() Of

Balances
Inconsistency Minor Resolved

ASA-95

Mutable Aliasing In NewOrder() Allows

Caller Modify price/quantity/TPSL After

Order Creation

Logical Issue Minor Resolved

ASA-96 FILLED Orders Can Be Reactivated Logical Issue Minor Resolved

ASA-97

AllOrNone OCO Strategy Incorrectly

Implemented — Behaves Same As

OneCancelsOther

Inconsistency Minor Resolved

FINDINGS ALPHA SEC. - AUDIT

ID Title Category Severity Status

ASA-98
Invalid State Transition In

TPSLOrder.Cancel()
Logical Issue Minor Acknowledged

ASA-99
Missing Check In MakeTimeNonceError()

Function

Logical Issue,

Inconsistency
Minor Resolved

ASA-116
Incorrect fromAmount Logging In

TransformLock() Function
Logical Issue Informational Resolved

ASA-117 Incorrect Error Messages In validate() Inconsistency Informational Resolved

ASA-118
Discussion On Missing Metadata In

Signing Message
Inconsistency Informational Resolved

ASA-119
Discussion On Non-Functional WAL

Manager Initialization
Logical Issue Informational Resolved

ASA-120
Discussion On Logging Errors Without

Return

Design Issue,

Coding Issue
Informational Acknowledged

ASA-121
Discussion On Order Cleanup After Trade

Settlement Failure
Coding Issue Informational Acknowledged

ASA-122

Duplicate OrderType Check In

validate() Of OrderContext And

StopOrderContext

Code Optimization Informational Resolved

ASA-123
Discussion On Latest Traded Price

Updated As Orderbook's Price
Design Issue Informational Acknowledged

ASA-124 Discussion On Incomplete Stage Logic Coding Issue Informational Acknowledged

ASA-132
Missing Checks In Copy() Of

StopOrder And TPSLOrder
Volatile Code Informational Resolved

ASA-133
Missing Nil Check Of Trade In

processTradesAndCleanup()
Volatile Code Informational Resolved

ASA-67
Discussion On Any Token That Is Pre-

Registered

Logical Issue,

Inconsistency
Informational Acknowledged

FINDINGS ALPHA SEC. - AUDIT

ASA-125 Missing Ownership Validation In Order Cancellation

Category Severity Location Status

Inconsistency, Denial of Service Major core/types/tx_input.go (go-ethereum-6101af6): 572 Resolved

Description

CancelContext.validateBalance() only checks for the existence of the order and does not verify that the order belongs to

the provided L1Owner. There is no subsequent ownership enforcement in dispatcher.handleCancelRequest or

engine.CancelOrder , so any account can cancel another user's order by supplying its orderId.

Recommendation

Fetch the order by ID and verify order.UserID matches L1Owner before returning success.

Alleviation

[Kaia, 12/11/2025]:

Issue acknowledged. Changes have been reflected in the commit de68b010ccb1ad77c6f89f64445fc56e65948489 .

ASA-125 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/de68b010ccb1ad77c6f89f64445fc56e65948489

ASA-68 Unrestricted Session.Metadata Field Enables Potential DoS

Attack

Category Severity Location Status

Denial of Service Major core/types/session.go (go-ethereum-6101af6): 28 Resolved

Description

The Metadata field in the Session struct of the session DEX command transaction does not appear to be utilized and

restricted during the transaction process.

Recommendation

Recommend adding size validation of Metadata during the transaction validation or removing it if it's not intended to be

used in the codebase.

Alleviation

[Kaia, 10/30/2025]:

Issue acknowledged. Changes have been reflected in the commit feca04c6d0945fce0d24e7e8c317a65f323f1375 .

ASA-68 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/feca04c6d0945fce0d24e7e8c317a65f323f1375

ASA-69 TPSL Lock Logic May Fail Due To Premature Locking Of
Unsettled Assets

Category Severity Location Status

Logical

Issue
Major

core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-6101af6): 366;

core/orderbook/v2/engine/symbol_engine.go (go-ethereum-6101af6): 814
Resolved

Description

The TPSL locking mechanism assumes that the original order’s settlement has already been completed, meaning the user

has received the traded tokens (base tokens for a BUY order or quote tokens for a SELL order).

Recommendation

Defer TPSL lock creation until after trade settlement is completed.

Alleviation

[Kaia, 11/26/2025]:

Issue acknowledged. Changes have been reflected in the commits c52b8e253d3f3d465b419b392d8e08e1fa495738 and

7a5c1fa2d15d273e505933a614b7c97e201c310c .

ASA-69 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/c52b8e253d3f3d465b419b392d8e08e1fa495738
https://github.com/kaiachain/go-ethereum/commit/7a5c1fa2d15d273e505933a614b7c97e201c310c

ASA-70 GetOrdersSorted() Corrupts Original Queue

Category Severity Location Status

Logical

Issue
Major

core/orderbook/v2/queue/buy_queue.go (go-ethereum-6101af6): 89~108;

core/orderbook/v2/queue/sell_queue.go (go-ethereum-6101af6): 89~108
Resolved

Description

GetOrdersSorted() is supposed to be a read-only getter, but it mutates the original BuyQueue/SellQueue’s orders. It

creates a shallow copy of the orders slice, so the temporary heap operates on the exact same *types.Order objects as the

original queue.

Recommendation

Sorting must not rely on or modify the heap.

Alleviation

[Kaia, 11/05/2025]:

Issue acknowledge. Changes have been reflected in commit f7851a97ebb5b22debbfdad16a4866eebea0165d .

ASA-70 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/f7851a97ebb5b22debbfdad16a4866eebea0165d

ASA-71 Market Order Locking Allows DoS Via Insufficient Balance

Category Severity Location Status

Design

Issue
Major

core/orderbook/v2/balance/manager.go (go-ethereum-6101af6): 325~32

6, 490
Resolved

Description

In LockForOrder() , when handling market orders, the function calls calculateMarketOrderAmount to determine the

amount to lock. During execution, m.Lock() fails due to insufficient balance, causing the transaction to revert and not be

included in the block.

Recommendation

Consider preventing these type of transactions during the transaction validation process.

Alleviation

[Kaia, 11/26/2025]:

Issue acknowledged. Changes have been reflected in the commit 9897543b4bcec2bfdff064941f0e5b3588076cc0 .

ASA-71 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/9897543b4bcec2bfdff064941f0e5b3588076cc0

ASA-72 Unbounded Wallet Sessions Enable Denial Of Service

Category Severity Location Status

Denial of

Service
Major

core/types/transaction.go (go-ethereum-6101af6): 448; arbos/tx_proce

ssor.go (dex-core-188b108): 549
Resolved

Description

The Kaia orderbook stack persists every wallet session directly in the account record without enforcing any per-address limit.

Recommendation

Enforce a strict per-address session cap.

Alleviation

[Kaia, 11/06/2025]:

Issue acknowledged. Changes have been reflected in the commit ea27589bcb58d6c5222023a6ec0eb7287aea1543 .

ASA-72 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/ea27589bcb58d6c5222023a6ec0eb7287aea1543

ASA-73 Missing Handling Of FailedOrders In ModifyOrder()

Category Severity Location Status

Inconsistency, Logical

Issue
Major

core/orderbook/v2/engine/symbol_engine.go (go-ethereum-6

101af6): 675, 686~691
Resolved

Description

ModifyOrder() ignores the information of failed IDs, its ModifyResult only exposes NewOrder , Trades ,

TriggeredOrderIds , and CancelledOrderIds , but drops FailedOrders .

Recommendation

Expose the FailedOrders list through ModifyResult and ensure they are processed by the dispatcher.

Alleviation

[Kaia, 11/23/2025]:

Issue acknowledged. Changes have been reflected in the commit 912bee211bc712425e6d9730f58b758f91c5b332 .

ASA-73 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/912bee211bc712425e6d9730f58b758f91c5b332

ASA-74 Balance Manager Records Locks Even When State Locking
Fails

Category Severity Location Status

Coding

Issue
Medium

core/orderbook/v2/balance/manager.go (go-ethereum-6101af6): 89, 14

7, 283, 769~772; core/state/state_object.go (go-ethereum-6101af6): 79

6; core/state/statedb.go (go-ethereum-6101af6): 582~587

Resolved

Description

The UpdateLockForTriggeredMarketOrder() persists LockInfo entries after calling StateDB.LockTokenBalance()

without checking the returned error. The state layer also drops the error from stateObject.LockTokenBalance() .

Recommendation

Propagate the error returned by stateObject.LockTokenBalance() (and ConsumeLockTokenBalance()) at the StateDB

level.

Alleviation

[Kaia, 11/26/2025]: Issue acknowledge. Changes have been reflected in the commit

30a767da95b547cbefe3077364dc72e29871699f .

ASA-74 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/30a767da95b547cbefe3077364dc72e29871699f

ASA-75 Inconsistent Order State Due To Incorrect Lock Amount Update

Category Severity Location Status

Coding

Issue
Medium

core/orderbook/v2/balance/manager.go (go-ethereum-6101af6): 403~

415
Resolved

Description

The UpdateLockForTriggeredMarketOrder() function is designed to increase the locked balance for a triggered stop-

market order by securing any additional available funds. The function correctly calculates a newAmount and updates the

central lock record via m.UpdateLock . However, the function then assigns the old lock amount back to the in-memory

order.LockedAmount field.

Recommendation

Update the in-memory value to reflect the latest amount after the lock update.

Alleviation

[Kaia, 10/29/2025]:

Issue acknowledged. Changes have been reflected in the commit c3d0dc00cd6fd173fa940bcf2ed61d1ffdf9cd5c .

ASA-75 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/c3d0dc00cd6fd173fa940bcf2ed61d1ffdf9cd5c

ASA-76 Improper Locking Order (Race Condition) In Lock()

Category Severity Location Status

Logical

Issue
Medium

core/orderbook/v2/balance/manager.go (go-ethereum-6101af6): 79~80,

89, 147, 283, 769~772; core/state/state_object.go (go-ethereum-6101af

6): 796; core/state/statedb.go (go-ethereum-6101af6): 582~587

Resolved

Description

In Lock() function, the balance check occurs before acquiring m.mu , meaning two concurrent Lock() calls for the same

user could both see sufficient funds and proceed to lock them simultaneously.

Recommendation

Acquire m.mu before calling GetTokenBalance() and performing the balance check to make the check-and-lock operation

atomic.

Alleviation

[Kaia, 10/29/2025]:

Issue acknowledged. Changes have been reflected in the commit 7116ab82e6e97c1b6da2ea58607a18900f89e747 .

ASA-76 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/7116ab82e6e97c1b6da2ea58607a18900f89e747

ASA-77 Potential Transaction Bloat Attack Due To Trailing Bytes

Category Severity Location Status

Denial of

Service
Medium

core/types/session.go (go-ethereum-6101af6): 47; core/types/tx_input.

go (go-ethereum-6101af6): 102, 191, 564, 627, 666, 977; core/types/v

alue_transfer.go (go-ethereum-6101af6): 30

Resolved

Description

The DEX command transaction type uses json.Unmarshal() to decode transaction bytes. However, json.Unmarshal()

tolerates trailing bytes, without raising an error.

Recommendation

Recommend strictly decoding the transaction bytes via rejecting any trailing bytes.

Alleviation

[Kaia, 11/22/2025]:

Issue acknowledged. Changes have been reflected in the commit 10074c0025921de77b15336574e9dea136c58b5f .

ASA-77 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/10074c0025921de77b15336574e9dea136c58b5f

ASA-78 Ambiguous Quantity Semantics Between Quote And Base
Tokens

Category Severity Location Status

Coding

Style
Medium

core/orderbook/v2/matching/price_time_priority.go (go-ethereum-6101

af6): 283
Resolved

Description

In the trade execution logic, the interpretation of Quantity is inconsistent across different parts of the matching process.

Recommendation

Consider unifying the semantics of Quantity across all code paths.

Alleviation

[Kaia, 11/27/2025]:

Issue acknowledged. Changes have been reflected in commit d9134f807b3df2b58315ab8acb4393392c6c4dd6 .

ASA-78 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/d9134f807b3df2b58315ab8acb4393392c6c4dd6

ASA-79 Lot-Size/Dust Validation Bypass For SELL Market Orders In
Quote Mode After Lock Limiting

Category Severity Location Status

Logical

Issue
Medium

core/orderbook/v2/matching/price_time_priority.go (go-ethereum-6101

af6): 275
Resolved

Description

In matchMarketQuoteMode() , when the taker is a SELL order in quote mode and a base-asset lock

(order.LockedAmount) is present, the function reduces execQuantity to respect the lock after it has already performed

lot-size rounding and dust checks. It never re-applies lot-size rounding or dust validation to the new, smaller execQuantity .

Recommendation

Consider applying the second round of RoundDownToLotSize/IsQuantityDust on this new execQuantity before creating

the trade.

Alleviation

[Kaia, 11/26/2025]:

Issue acknowledged. Changes were reflected in the commit 2bf7081e0a0bd0b28690b16ec4abbc1b2ececfe1 .

ASA-79 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/2bf7081e0a0bd0b28690b16ec4abbc1b2ececfe1

ASA-80 Incorrect Unlock Identifier In createTPSLOrders May Cause

Stuck TPSL Locks And Balance Inconsistency

Category Severity Location Status

Inconsistency, Logical

Issue
Medium

core/orderbook/v2/engine/symbol_engine.go (go-ethereum

-6101af6): 814, 824
Resolved

Description

The function createTPSLOrders() is intended to generate TPSL orders for a filled order that includes TPSL , and it

establishes an early TPSL lock through the createTPSLLock() function, which assigns a lock identifier in the format "

<orderID>_TPSL" . If TPSL order creation fails, the rollback logic calls Unlock() , using the original order ID instead of the

TPSL order ID.

Recommendation

Update the rollback logic in createTPSLOrders() to call e.balanceManager.Unlock() .

Alleviation

[Kaia, 11/06/2025]:

Issue acknowledged. Changes have been reflected in the commit e9b3a813ac0ca7c5f371b4e88824c968e9e5c385 .

ASA-80 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/e9b3a813ac0ca7c5f371b4e88824c968e9e5c385

ASA-81 Discussion On Gas-Free Dex Commands Design That Enables
Multi-Layer DoS

Category Severity Location Status

Design Issue, Denial of Service Medium Acknowledged

Description

Alpha Sec. dex treats every Dex command transation as gas-free. That design removes the economic backstop that

normally throttles abusive traffic, potentially resulting the dos attack with transaction-specific path, oversized transaction and

spam transactions.

Recommendation

The gas-free mechanism of the dex command transaction one of the design choice currently implemented in the kaia

orderbook dex, the audit team would like to confirm with the team how such DoS attack vectors would be prevented and

recommend revisiting the gas-free design.

Alleviation

[Kaia, 11/27/2025]:

The team acknowledged the issue and decided not to implement the recommended change in the current engagement.

ASA-81 ALPHA SEC. - AUDIT

ASA-82 Both TP Order And SL Orders Could Exist In Orderbook In
Some Edge Cases

Category Severity Location Status

Design

Issue
Medium

core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-6101af6): 6

50
Resolved

Description

In the ModifyOrder() function, processOrderInternal() is used to match orders and generate trades. If a passive order

is marked as tpsl, a TP order may be created and added to the triggeredQueue via CreateTPSLForFilledOrder() .

However, during ModifyOrder() , triggered TP orders may remain unprocessed in the queue when the function completes.

In rare cases, if a stop-loss condition is triggered before the queued TP order is handled, the SL order may enter the

orderbook while the corresponding TP order is still pending.

Recommendation

Consider aligning the post-processing of ModifyOrder() with ProcessOrder() .

Alleviation

[Kaia, 11/27/2025]:

Issue acknowledged. Changes have been reflected in the commit 912bee211bc712425e6d9730f58b758f91c5b332 .

ASA-82 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/912bee211bc712425e6d9730f58b758f91c5b332

ASA-83 TriggeredQueue Not Restored From Engine Snapshot

Category Severity Location Status

Coding

Issue
Medium

core/orderbook/v2/engine/symbol_engine.go (go-ethereum-6101af6):

1216~1270
Resolved

Description

The function RestoreFromSnapshot() restores the SymbolEngine state from a snapshot. While this function restores

orders, triggers, and OCO pairs, it does not restore the triggeredQueue in the engine.

Recommendation

Ensure that triggeredQueue is persisted in the snapshot and restored properly.

Alleviation

[Kaia, 11/27/2025]:

Issue acknowledged. Changes have been reflected in the commit 912bee211bc712425e6d9730f58b758f91c5b332.

ASA-83 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/912bee211bc712425e6d9730f58b758f91c5b332

ASA-84 Incorrect Value Copy During Aggregation Leads To Erroneous
Market Depth

Category Severity Location Status

Logical

Issue
Medium

core/orderbook/v2/book/orderbook.go (go-ethereum-6101af6): 340~3

59
Resolved

Description

The aggregateOrders() function incorrectly copies PriceLevel structs by value into its result slice. Subsequent updates

to the same price level, meant to aggregate order quantities, modify the original struct via a pointer map but fail to update the

copy in the slice.

Recommendation

It's recommended to ensure the final slice is constructed from the fully aggregated data, not from intermediate copies.

Alleviation

[Kaia, 11/22/2025]:

Issue acknowledged. Changes have been reflected in the commit da0d179ce5dc70cefd910867ee86fa9075c196ac .

ASA-84 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/da0d179ce5dc70cefd910867ee86fa9075c196ac

ASA-85 Non-Atomic TPSL Creation Can Lead To Orphaned Orders And
Inconsistent State

Category Severity Location Status

Logical

Issue
Medium

core/orderbook/v2/conditional/manager.go (go-ethereum-6101af6): 69

~148
Resolved

Description

The CreateTPSLForFilledOrder() function establishes a TPSL setup in a multi-step, non-atomic sequence.

Recommendation

Recommend refactoring the TPSL creation process to be atomic.

Alleviation

[Kaia, 11/25/2025]:

Issue acknowledged. Changes have been reflected in the commit dbbfa5671b05de6d362f3e6e12e2c91dcd76b3be .

ASA-85 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/dbbfa5671b05de6d362f3e6e12e2c91dcd76b3be

ASA-86 Funds Unlocked Before Order Removal In
handleCancelAllRequest()

Category Severity Location Status

Volatile Code, Denial of

Service
Medium

core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-

6101af6): 560, 574~575
Resolved

Description

The handleCancelAllRequest() is intended to handle the request to cancel all the orders from the user (L1Owner). If an

error occurs during the order cancellation step, some orders may remain in the orderbook even though their previously

locked tokens have already been unlocked.

Recommendation

Recommend refactoring the logic so that orders are cancelled first, and tokens are unlocked only for those orders that have

been successfully cancelled.

Alleviation

[Kaia, 11/23/2025]:

Issue acknowledged. Changes have been reflected in the commit 6faedee3c1d900871dbda8e1f1860f9e24515ccc and

370ed4b3d95c612d87087298cb191c4ea46ff660 .

ASA-86 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/6faedee3c1d900871dbda8e1f1860f9e24515ccc
https://github.com/kaiachain/go-ethereum/commit/370ed4b3d95c612d87087298cb191c4ea46ff660

ASA-100 Potential Exploitation Of SL Market Orders Via Extreme Price
Updates

Category Severity Location Status

Design

Issue
Minor

core/orderbook/v2/engine/symbol_engine.go (go-ethereum-6101af6):

947~959; core/orderbook/v2/matching/price_time_priority.go (go-ethe

reum-6101af6): 38~39

Acknowledged

Description

After an order is processed, its price may be updated. The updated price can trigger stop-loss (SL) orders, which are added

to the triggerQueue for the next processing round. Market SL orders are executed immediately against the OrderBook .

Recommendation

Consider implementing protections to prevent extreme-price orders from being accepted or processed.

Alleviation

[Kaia, 11/21/2025]:

The team acknowledged the issue and decided not to implement the recommended change in the current engagement

ASA-100 ALPHA SEC. - AUDIT

ASA-101 Unsynchronized And Unvalidated Metadata Persistence In
Stop() Causes WAL Inconsistency

Category Severity Location Status

Logical

Issue
Minor

core/orderbook/v2/persistence/wal_manager.go (go-ethereum-6101af6):

95~114
Resolved

Description

The WALManager tracks the last written WAL sequence (w.currentSequence) and block number (w.currentBlock) in

memory and persists them to the database under metadata keys. However, saveMetadata() neither acquires w.mu (the

primary mutex guarding state updates), nor validates that a WAL entry for w.currentSequence actually exists on disk.

Recommendation

Validate before persisting to ensure that the WAL entry for w.currentSequence exists.

Alleviation

[Kaia, 11/13/2025] :

Issue acknowledged. Changes have been reflected in the commit 5a258ef8f271f48f5d57b03f95e88f5ea3a9281f .

ASA-101 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/5a258ef8f271f48f5d57b03f95e88f5ea3a9281f

ASA-102 Potential Overflow Leads To Panic With MustFromBig()

Category Severity Location Status

Volatile Code Minor precompiles/ArbTokenIssuer.go (dex-core-188b108): 65, 103, 132 Resolved

Description

The input amount passed into the function Mint() and Burn() misses the overflow check. The MustFromBig() panics

if the big.Int input is overflowed.

Recommendation

Recommend adding the overflow check to prevent unexpected panic.

Alleviation

[Kaia, 11/12/2025]:

Issue acknowledged. Changes have been reflected in the commit 9e44da91d3035c6d19433833ae3fa72f34823eea .

ASA-102 ALPHA SEC. - AUDIT

https://github.com/kaiachain/kaia-orderbook-dex-core/commit/9e44da91d3035c6d19433833ae3fa72f34823eea

ASA-103 Insufficient Constraint On Data Size

Category Severity Location Status

Volatile Code Minor precompiles/ArbTokenIssuer.go (dex-core-188b108): 218, 342 Resolved

Description

The following code of data parse only checks that the length of remaining data is no less than the current position plus the

data length. If the data length correctly encodes the size of the data, then the check is supposed to be equality.

Recommendation

Recommend changing the check to equality.

Alleviation

[Kaia, 11/12/2025]:

Issue acknowledged. Changes have been reflected in the commit 77c7fc563c8d4280fb0ecf4f253cbeb8f193cc6a .

ASA-103 ALPHA SEC. - AUDIT

https://github.com/kaiachain/kaia-orderbook-dex-core/commit/77c7fc563c8d4280fb0ecf4f253cbeb8f193cc6a

ASA-104 Expired Session Wallet Does Not Fail

Category Severity Location Status

Inconsistency Minor core/types/transaction.go (go-ethereum-6101af6): 459 Resolved

Description

All dex command transaction invokes the function ValidateDexCommand() , which validates the sender matches one of the

session wallet. However, it only logs the error when the session wallet is expired, instead of returning error.

Recommendation

Recommend propagating the error so that expired session wallet cannot submit transaction on behalf of l1owner.

Alleviation

[Kaia, 11/12/2025]:

Issue acknowledged. Changes have been reflected in the commit 4bae8074e93013dff7942fe184ec527c7cb961dd .

ASA-104 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/4bae8074e93013dff7942fe184ec527c7cb961dd

ASA-105 Missing Nonzero Check Of Input data

Category Severity Location Status

Volatile Code Minor precompiles/ArbTokenIssuer.go (dex-core-188b108): 341 Acknowledged

Description

The function parseEncodedBytes() is intended to parse the name and symbol of the ERC20 metadata, while it does not

check the string length of such bytes are nonzero.

Recommendation

Recommend adding the nonzero check to prevent unexpected results.

Alleviation

[Kaia, 11/12/2025]:

The team acknowledged the issue and decided not to implement the recommended change in the current engagement.

ASA-105 ALPHA SEC. - AUDIT

ASA-106 Dispatcher Panics On Shutdown If New Requests Arrive After
Stop()

Category Severity Location Status

Denial of Service, Volatile

Code
Minor

core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-6

101af6): 111, 132
Resolved

Description

The Dispatcher.Stop() cancels the dispatcher context and closes requestChan . Any concurrent call to

Dispatcher.DispatchReq() that races after the close still executes the select; the send case d.requestChan <- req is

chosen immediately, but sending on a closed channel panics.

Recommendation

Ensure DispatchReq() refuses new requests once Stop() begins instead of sending to a closed channel.

Alleviation

[Kaia, 11/23/2025]:

Issue acknowledged. Changes have been reflected in the commit c4abd026c522d93652744806490fcc2af25b18c9 .

ASA-106 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/c4abd026c522d93652744806490fcc2af25b18c9

ASA-107 Missing LockedAmount In Deep Copy Method Copy() Of

Order

Category Severity Location Status

Volatile Code,

Inconsistency
Minor

core/orderbook/v2/types/order.go (go-ethereum-6101af6):

233
Resolved

Description

The Copy() method of Order is intended to perform a deep copy, but it misses the field LockedAmount .

Recommendation

Recommend deep copying LockedAmount in the Copy() method of Order .

Alleviation

[Kaia, 11/23/2025]:

Issue acknowledged. Changes have been reflected in the commit 80116d4dab9868f25de9c22b17ce16b34796220b .

ASA-107 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/80116d4dab9868f25de9c22b17ce16b34796220b

ASA-108 validate() Misses Validation Of OrderMode

Category Severity Location Status

Volatile Code,

Inconsistency
Minor

core/types/tx_input.go (go-ethereum-6101af6): 192, 667,

978
Resolved

Description

The OrderMode in OrderContext , ModifyContext and StopOrderContext is supposed to be either 0 (base mode

(default)) or 1 (quote mode), but there is no validation to ensure that.

Recommendation

Recommend adding the validation of OrderMode to ensure a malformed order will be rejected.

Alleviation

[Kaia, 11/25/2025]:

Issue acknowledged. Changes have been reflected in the commit 9bb0aff6f200422ec6deca74f69fb48d9af16020 .

ASA-108 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/9bb0aff6f200422ec6deca74f69fb48d9af16020

ASA-109 Missing Validation Of Existing Order In validate() Of

ModifyContext

Category Severity Location Status

Volatile Code, Inconsistency Minor core/types/tx_input.go (go-ethereum-6101af6): 667 Resolved

Description

According to the logic in Dispatcher.handleModifyRequest() , the modified order should not contain TPSL and must be a

LIMIT order. However, there is no validation on the existing order.

Recommendation

Recommend adding these validation to reject the malformed transaction.

Alleviation

[Kaia, 11/23/2025]:

Issue acknowledged. Changes have been reflected in the commit ea995eab197e39cd438a25c8dcedf05ca1f5f7c4 .

ASA-109 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/ea995eab197e39cd438a25c8dcedf05ca1f5f7c4

ASA-110 Incorrect Order Of Return Values In
GetOrderbookSnapshot()

Category Severity Location Status

Logical

Issue
Minor

core/orderbook/v2/engine/symbol_engine.go (go-ethereum-6101af6): 10

81
Resolved

Description

In the function GetOrderbookSnapshot() , orderbook.GetDepth() returns (bids, asks), but the engine assigns it as (asks,

bids).

Recommendation

Recommend correcting the variable assignments in the GetOrderbookSnapshot() function to ensure bids and asks are

assigned in the proper order.

Alleviation

[Kaia, 11/21/2025]:

Issue acknowledged. Changes have been reflected in the commit 9897543b4bcec2bfdff064941f0e5b3588076cc0 .

ASA-110 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/9897543b4bcec2bfdff064941f0e5b3588076cc0

ASA-111 Non-Determinism Due To Map Iteration

Category Severity Location Status

Volatile Code,

Inconsistency
Minor

core/orderbook/v2/balance/manager.go (go-ethereum-6101af

6): 280, 808; core/orderbook/v2/book/orderbook.go (go-ethereu

m-6101af6): 562; core/orderbook/v2/tpsl/oco_controller.go (go-

ethereum-6101af6): 280; core/orderbook/v2/tpsl/trigger_manag

er.go (go-ethereum-6101af6): 154, 221, 262

Acknowledged

Description

Go randomises map iteration order, so every call can return the slice in a different order. In the linked places, the map

iteration without sorting the keys.

Recommendation

Recommend performing an extra sorting to ensure deterministic results.

Alleviation

[Kaia, 11/23/2025]:

Issue acknowledged. I will fix the issue in the future, which will not be included in this audit engagement.

ASA-111 ALPHA SEC. - AUDIT

ASA-112 Time-Nonce Validation Could Possibly Be Bypassed In
timeNonceDriftAcceptable()

Category Severity Location Status

Inconsistency, Volatile

Code
Minor

execution/gethexec/time_nonce.go (dex-core-188b108):

26
Resolved

Description

The timeNonceDriftAcceptable() function is intended to validate the time nonce is within drift window. The input

txNonce multiplies the millisecond nonce in signed int64 before feeding it to time.Unix . Any nonce that overflows after

multiplication, yet lands on exactly the same txTime as the honest timestamp.

Recommendation

Reject out-of-range inputs before doing the multiplication.

Alleviation

[Kaia, 11/24/2025]:

Issue acknowledged. Changes have been reflected in the commit b533a8060ba3b0f449eea2caa8f0cdcb70445094 .

ASA-112 ALPHA SEC. - AUDIT

https://github.com/kaiachain/kaia-orderbook-dex-core/commit/b533a8060ba3b0f449eea2caa8f0cdcb70445094

ASA-113 Missing Validation Of Existing Order In validate() Of

CancelAllContext

Category Severity Location Status

Volatile Code Minor core/types/tx_input.go (go-ethereum-6101af6): 635 Resolved

Description

Unlike the validate() of CancelContext , the validate() of CancelAllContext does not validate whether the

L1Owner has any existing order.

Recommendation

Recommend adding the validation to ensure the L1Owner has existing order to prevent the execution of these spam

transactions.

Alleviation

[Kaia, 11/27/2025]:

Issue acknowledged. Changes have been reflected in the commit dac83203ac2987a1cf3b694f36888d54acfe7bf2 .

ASA-113 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/dac83203ac2987a1cf3b694f36888d54acfe7bf2

ASA-114 Missing Deep Copy Of Order Information In
CreateModifiedOrder()

Category Severity Location Status

Volatile

Code
Minor

core/orderbook/v2/engine/symbol_engine.go (go-ethereum-54ccff3): 654

~658, 664, 669
Resolved

Description

CreateModifiedOrder() builds the replacement order before the old order is cancelled, but it doesn’t clone any of the

numeric fields it copies from existingOrder .

Recommendation

Recommend performing deep copy of the values to the new order in CreateModifiedOrder() .

Alleviation

[Kaia, 11/30/2025]:

Issue acknowledged. Changes have been reflected in the commit 534acb0c7686016b9fad193e07a7ad0998934810 .

ASA-114 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/534acb0c7686016b9fad193e07a7ad0998934810

ASA-115 Async Delta Loss Due To Premature Dirty-Flag Reset

Category Severity Location Status

Volatile Code,

Inconsistency
Minor

core/orderbook/v2/persistence/delta_writer.go (go-ethereum-

54ccff3): 110; core/orderbook/v2/persistence/manager.go (g

o-ethereum-54ccff3): 225~232

Acknowledged

Description

PersistenceManager.OnBlockEnd() enqueues each block’s DispatcherDelta and immediately calls

dispatcher.ResetAllDirtyTracking() . Any crash between enqueueing the delta and the writer’s disk flush permanently

drops that block’s mutations from persistence.

Recommendation

Defer dispatcher.ResetAllDirtyTracking() until the delta write completes.

Alleviation

[Kaia, 11/30/2025]:

The team acknowledged the issue and decided not to implement the recommended change in the current engagement.

ASA-115 ALPHA SEC. - AUDIT

ASA-126 Non-Atomic Lock Consumption Can Leave Balances Partially
Consumed On Failure

Category Severity Location Status

Volatile Code Minor core/orderbook/v2/balance/settlement.go (go-ethereum-6101af6): 139 Resolved

Description

verifyAndConsumeLocks() first checks both sides have sufficient locked balances, then calls ConsumeLock for the buyer,

and only afterwards calls ConsumeLock for the seller. If the seller consumption fails (e.g., due to concurrent updates, alias

resolution changes, or StateDB inconsistency), the function returns an error after the buyer lock has already been consumed.

The caller does not roll back the first consumption, leaving the system in an inconsistent state where part of the trade was

charged but assets were not delivered. This can result in user funds being consumed without settlement.

Recommendation

Make the consumption of both locks atomic with rollback.

Alleviation

[Kaia, 12/18/2025]:

Issue acknowledged. Changes have been reflected in the commit 95869593ed4b6f7691d92aea33fda066f7ec8460 and

67ecc7efaa3100b4d2a64ecd3b3c815169acda28 .

ASA-126 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/95869593ed4b6f7691d92aea33fda066f7ec8460
https://github.com/kaiachain/go-ethereum/commit/67ecc7efaa3100b4d2a64ecd3b3c815169acda28

ASA-127 Discussion On Logged Settlement And OCO Failures Without
Proper Handling

Category Severity Location Status

Inconsistency Minor

core/orderbook/v2/conditional/manager.go (go-ethereum-9586959): 219

~221; core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-95869

59): 286~289

Resolved

Description

In processTradesAndCleanup() a failed settleTrade() is logged, but we still CompleteOrder()/untrackOrder()

filled legs; processSingleOrderResult() will also finalize the taker on terminal status. So if settleTrade fails (nil

FeeRetriever, bad token IDs, StateDB error, etc.), orders are removed/unlocked and OCO/conditional flows continue even

though no asset transfers occurred, and verifyAndConsumeLocks may already have consumed locked balances with no

rollback.

Similarly, when an SL trigger fires, conditional.Manager.CheckTriggers() removes the OCO pair via ExecuteOCO()

and then calls the SymbolEngine.cancelOrderDirect() for each paired order. If the canceller returns an error (e.g., TP

not found), CheckTriggers() just logs it; the pair is already removed, so the TP stays live with no OCO mapping and

both legs can execute.

Recommendation

The audit team would like to know if the current behavior is by design. If not, recommend handling the error properly in these

corner cases.

Alleviation

[Kaia, 12/18/2025]:

Issue acknowledged. Changes have been reflected in the commit 67ecc7efaa3100b4d2a64ecd3b3c815169acda28 and

6684a4643f55a916d84e48ddc633b2ede6df06e6 .

ASA-127 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/67ecc7efaa3100b4d2a64ecd3b3c815169acda28
https://github.com/kaiachain/go-ethereum/commit/6684a4643f55a916d84e48ddc633b2ede6df06e6

ASA-128 Missing Comparison Between SLLimit And SLTrigger

Category Severity Location Status

Logical Issue Minor core/types/tx_input.go (go-ethereum-9586959): 317~318 Acknowledged

Description

There is no side‑aware check in validate() of OrderContext that SLLimit (if not nil) is on the correct side of

SLTrigger . As a result, a BUY can submit SLLimit above the trigger (or SELL below) and pass tx validation, leading to

an SL limit that’s unlikely to execute when triggered.

Recommendation

For sensible execution, SLLimit should be on the “exit” side of the trigger (BUY: ≤ trigger; SELL: ≥ trigger).

Alleviation

[Kaia, 12/17/2025]:

Issue acknowledged. I won't make any changes for the current version.

ASA-128 ALPHA SEC. - AUDIT

ASA-129 Stale Depth From In‑Place Order Mutation In UpdateOrder()

Category Severity Location Status

Volatile Code Minor core/orderbook/v2/book/orderbook.go (go-ethereum-9586959): 149 Resolved

Description

UpdateOrder() assumes it gets an untouched “old” order, but the matcher mutates the passive order in place before calling

it. Inside UpdateOrder() , oldOrder and order are the same pointer, so the code removes and re‑adds the price level using

already‑reduced quantities. The net effect on aggregated depth is zero: Level2 totals stay at the pre‑fill amount even though

the queue entry shrank, producing stale depth data.

Recommendation

Fetch and store a copy of the order’s previous state within UpdateOrder before applying any updates, ensuring aggregated

price levels are correctly updated and remain consistent with the underlying order queue.

Alleviation

[Kaia, 12/18/2025]:

Issue acknowledged. Changes have been reflected in the commit 1bc200ae59862e658805ceb9e06281ae3e5f8304 .

ASA-129 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/1bc200ae59862e658805ceb9e06281ae3e5f8304

ASA-130 TPSL Creation Failure Leaves Stale Pre-Registered TP/SL
Routes

Category Severity Location Status

Inconsistency Minor
core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-9586959): 63

3
Resolved

Description

When CreateTPSLAfterSettlement() fails inside processConditionalPostSettlement() , the code only logs the error

and appends FailedOrders but does not clean up the TP/SL order IDs that were pre-registered earlier via

preRegisterTPSL() .

Recommendation

Recommend explicitly untracking the TP/SL IDs in the error branch of processConditionalPostSettlement() .

Alleviation

[Kaia, 12/17/2025]:

Issue acknowledged. Changes have been reflected in the commit 31b34416d87ff07a5cabc218c7e56d751c0da090 .

ASA-130 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/31b34416d87ff07a5cabc218c7e56d751c0da090

ASA-131 Market Orders Accept Negative Prices

Category Severity Location Status

Volatile Code Minor core/types/tx_input.go (go-ethereum-9586959): 400 Resolved

Description

Negative market prices are not rejected during order validation and are instead converted to their two’s complement

representation via MustFromBig() .

Recommendation

Recommend adding a check to reject the negative price.

Alleviation

[Kaia, 12/16/2025]:

Issue acknowledged. Changes have been reflected in the commit 51ed57f9bb950ffb703951f094bc4fe2e73cee18 .

ASA-131 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/51ed57f9bb950ffb703951f094bc4fe2e73cee18

ASA-87 Order Lock Can Be Removed When oldOrderID Equals

NewOrderID

Category Severity Location Status

Volatile Code,

Logical Issue
Minor

core/orderbook/v2/balance/manager.go (go-ethereum-6101af6): 716

~717; core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-61

01af6): 650

Resolved

Description

In the ModifyOrderLock() function, the lock record is updated and then the old key is deleted. If oldOrderID is the same

as newOrder.OrderID , the delete() call removes the newly updated lock entry from m.locks .

Recommendation

Consider updating ModifyOrderLock to handle the same-ID scenario safely without deleting the lock.

Alleviation

[Kaia, 11/04/2025]:

Issue acknowledged. Changes have been reflected in the commit e52e326a2b8070c658321d64e61787b56ceb2154 .

ASA-87 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/e52e326a2b8070c658321d64e61787b56ceb2154

ASA-88 Missing Nil Pointer Check In Copy() Of

ValueTransferContext

Category Severity Location Status

Volatile Code, Coding Issue Minor core/types/value_transfer.go (go-ethereum-6101af6): 56 Resolved

Description

The Copy() function of ValueTransferContext misses the nil pointer check of its field, Value , which could possibly lead

to dereference panic when invoking s.Value.Bytes() .

Recommendation

Recommend adding a nil pointer check of s.Value before calling its method Bytes() .

Alleviation

[Kaia, 11/04/2025]:

Issue acknowledged. Changes have been reflected in the commit a208e3da498cfecb1e60932a0fd45a424d4d51c8 .

ASA-88 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/a208e3da498cfecb1e60932a0fd45a424d4d51c8

ASA-89 Unsafe Internal Pointer Exposure Via GetBuyOrders()

Category Severity Location Status

Logical

Issue
Minor

core/orderbook/v2/book/orderbook.go (go-ethereum-6101af6): 204, 2

12, 220, 228; core/orderbook/v2/queue/buy_queue.go (go-ethereum-

6101af6): 44, 82~87, 90~108; core/orderbook/v2/queue/sell_queue.g

o (go-ethereum-6101af6): 44, 81~87, 90~108

Acknowledged

Description

The functions orderBook.GetBuyOrders() and buy_queue.GetOrdersSorted() expose internal order pointers

*types.Order directly to external callers. Although both functions attempt to return a “copy” of the internal slice, the copy

operation only performs a shallow copy.

Recommendation

Return deep copies or detached value copies of internal order data rather than raw pointers.

Alleviation

[Kaia, 11/23/2025]:

Issue acknowledged. Changes have been reflected in the commit f7851a97ebb5b22debbfdad16a4866eebea0165d .

ASA-89 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/f7851a97ebb5b22debbfdad16a4866eebea0165d

ASA-90 Order Quantity And Price Validation Uses IsZero() Instead Of

Sign() To Ensure Strict Positivity

Category Severity Location Status

Volatile

Code
Minor

core/orderbook/v2/engine/symbol_engine.go (go-ethereum-6101af6): 98

4~986, 989
Resolved

Description

Within the validateOrder() function, order.Quantity and order.price are of type *uint256.Int . Using IsZero()

only detects if the value is exactly zero, and does not correctly validate that the quantity is strictly positive.

Recommendation

Replace the quantity validation check to enforce strict positivity.

Alleviation

[Kaia, 11/11/2025]:

Issue acknowledged. Changes have been reflected in the commit b14398f0e3c66668fa1319b0a437c83a1126e530 .

ASA-90 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/b14398f0e3c66668fa1319b0a437c83a1126e530

ASA-91 Reversed Conditional In TokenTransferContext.copy()

Category Severity Location Status

Logical Issue Minor core/types/tx_input.go (go-ethereum-6101af6): 96~98 Resolved

Description

The TokenTransferContext.copy() function contains a reversed conditional check.

Recommendation

Recommend correcting the conditional logic in the copy() function.

Alleviation

[Kaia, 11/04/2025]:

Issue acknowledged. Changes have been reflected in the commit a208e3da498cfecb1e60932a0fd45a424d4d51c8 .

ASA-91 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/a208e3da498cfecb1e60932a0fd45a424d4d51c8

ASA-92 Missing Copy Of LockedBalance In Copy() Of StateAccount

Category Severity Location Status

Inconsistency Minor core/types/state_account.go (go-ethereum-6101af6): 54 Resolved

Description

The Copy() function of StateAccount misses the copy of its field LockedBalance .

Recommendation

Recommend adding the copy of LockedBalance .

Alleviation

[Kaia, 11/11/2025]:

Issue acknowledged. Changes have been reflected in the commit 28837125a4cafe35af335b216580a70e1b5eeb1a .

ASA-92 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/28837125a4cafe35af335b216580a70e1b5eeb1a

ASA-93 Missing LockedBalance In Account

Category Severity Location Status

Inconsistency Minor core/types/account.go (go-ethereum-6101af6): 36 Resolved

Description

The following Account struct misses the field LockedBalance that was declared in the StateAccount to represent the

locked balance of Kaia token.

Recommendation

Recommend adding the LockedBalance field to Account struct.

Alleviation

[Kaia, 11/11/2025]:

Issue acknowledged. Changes have been reflected in the commit 28837125a4cafe35af335b216580a70e1b5eeb1a .

ASA-93 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/28837125a4cafe35af335b216580a70e1b5eeb1a

ASA-94 Non-Deterministic MarshalJSON() Of Balances

Category Severity Location Status

Inconsistency Minor core/types/token_balance.go (go-ethereum-6101af6): 169 Resolved

Description

The MarshalJSON() of Balances utilizes the map iteration to append the elements in a slice, which could be non-

deterministic in Go.

Recommendation

Recommend sorting the keys in the map to ensure deterministic marshal.

Alleviation

[Kaia, 10/30/2025]:

Issue acknowledged. Changes have been reflected in the commit 4faba41b9dde05fcac01da87bb59b43459d75f01 .

ASA-94 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/4faba41b9dde05fcac01da87bb59b43459d75f01

ASA-95 Mutable Aliasing In NewOrder() Allows Caller Modify

price/quantity/TPSL After Order Creation

Category Severity Location Status

Logical

Issue
Minor

core/orderbook/v2/types/order.go (go-ethereum-6101af6): 203~222; core/

orderbook/v2/types/trade.go (go-ethereum-6101af6): 63~64
Resolved

Description

NewOrder() stores caller-provided pointers (price , quantity , and TPSLContext) directly into the returned Order

without cloning.

Recommendation

Perform deep cloning of all mutable inputs inside NewOrder() .

Alleviation

[Kaia, 11/05/2025]:

Issue acknowledged. Changes have been reflected in commit 849a542130da9b3fe2dfced236e075823a9bbee2 .

ASA-95 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/849a542130da9b3fe2dfced236e075823a9bbee2

ASA-96 FILLED Orders Can Be Reactivated

Category Severity Location Status

Logical Issue Minor core/orderbook/v2/types/order.go (go-ethereum-6101af6): 291~302 Resolved

Description

UpdateStatus() treats only REJECTED , CANCELLED , and EXPIRED as terminal and proceeds for all other statuses.

FILLED is a terminal status but is not included in the early-return guard of UpdateStatus() .

Recommendation

Update the UpdateStatus() method to treat all terminal states, including FILLED .

Alleviation

[Kaia, 11/05/2025]:

Issue acknowledged. Changes have been reflected in commit 5d32e82f63b18c2397c4f267c780fee9b823fef3 .

ASA-96 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/5d32e82f63b18c2397c4f267c780fee9b823fef3

ASA-97 AllOrNone OCO Strategy Incorrectly Implemented — Behaves

Same As OneCancelsOther

Category Severity Location Status

Inconsistency Minor
core/orderbook/v2/tpsl/interfaces.go (go-ethereum-6101af6): 110; core/

orderbook/v2/tpsl/oco_controller.go (go-ethereum-6101af6): 81, 91
Resolved

Description

In the CancelOCO() function, the implementation for the AllOrNone strategy is identical to that of OneCancelsOther . Both

strategies currently skip cancelling the triggering order (if id != orderID), meaning that when one order in an AllOrNone pair

is manually cancelled, only the other orders are cancelled.

Recommendation

Update the AllOrNone case in CancelOCO() to cancel all orders, including the triggering one, by removing the condition if

id != orderID.

Alleviation

[Kaia, 11/04/2025]:

Issue acknowledged. Changes have been reflected in the commit c8e5a9f81e37efed827aa7bff06e6e8be95983f4 .

ASA-97 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/c8e5a9f81e37efed827aa7bff06e6e8be95983f4

ASA-98 Invalid State Transition In TPSLOrder.Cancel()

Category Severity Location Status

Logical

Issue
Minor

core/orderbook/v2/types/conditional.go (go-ethereum-6101af6): 28

3~291
Acknowledged

Description

TPSLOrder.Cancel() unconditionally sets the TPSL status to CANCELLED and the SL child order’s status to CANCELLED

without validating the current state.

Recommendation

Reject invalid state transition from TRIGGERED back to CANCELLED .

Alleviation

[Kaia, 11/25/2025]: The team acknowledged the issue and decided not to implement the recommended change in the

current engagement.

ASA-98 ALPHA SEC. - AUDIT

ASA-99 Missing Check In MakeTimeNonceError() Function

Category Severity Location Status

Logical Issue,

Inconsistency
Minor

execution/gethexec/time_nonce.go (dex-core-188b108):

35
Resolved

Description

The MakeTimeNonceError() function misses the check that Timestamp Nonce must always be greater than the current

state nonce, which is inconsistent with the design documentation.

Recommendation

Recommend explicitly adding the check that Timestamp Nonce is greater than the state nonce.

Alleviation

[Kaia, 11/25/2025]:

Issue acknowledged. Changes have been reflected in the commit 0b956f6f8db99cfcfe7595bad340c917bd58b962 .

ASA-99 ALPHA SEC. - AUDIT

https://github.com/kaiachain/kaia-orderbook-dex-core/commit/0b956f6f8db99cfcfe7595bad340c917bd58b962

ASA-116 Incorrect fromAmount Logging In TransformLock() Function

Category Severity Location Status

Logical

Issue
Informational

core/orderbook/v2/balance/manager.go (go-ethereum-6101af6):

775~784
Resolved

Description

In the TransformLock() function, the system logs the transformation details of a token lock (used in TPSL scenarios).

However, the function updates lock.Amount before writing the log entry.

Recommendation

Preserve the original amount before overwriting it and use the preserved value in logs.

Alleviation

[Kaia, 10/30/2025]:

Issue acknowledged. Changes have been reflected in commit f9ecc1fbd4e6366686b73b2c785bd145cc903ec4 .

ASA-116 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/f9ecc1fbd4e6366686b73b2c785bd145cc903ec4

ASA-117 Incorrect Error Messages In validate()

Category Severity Location Status

Inconsistency Informational
core/types/tx_input.go (go-ethereum-6101af6): 120~125; core/ty

pes/value_transfer.go (go-ethereum-6101af6): 38~43
Resolved

Description

The following error messages are not accurately describing the previous condition:

"amount must be positive" should be "amount must be non-negative"

"price exceeds uint256 max value" should be "amount exceeds uint256 max value"

Recommendation

Recommend correcting the error messages.

Alleviation

[Kaia, 10/30/2025]:

Issue acknowledged. Changes have been reflected in the commit ea11f988e6c0b721a62be5648096f97b59452447 .

ASA-117 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/ea11f988e6c0b721a62be5648096f97b59452447

ASA-118 Discussion On Missing Metadata In Signing Message

Category Severity Location Status

Inconsistency Informational core/types/session.go (go-ethereum-6101af6): 124, 154~155 Resolved

Description

The Session struct contains the Metadata field, while it's been ignored during the signing process when converting the

Session into signing message via ToTypedData() .

Recommendation

The audit team would like to understand the design intention of the Metadata .

Alleviation

[Kaia, 10/29/2025]:

Metadata field is not used for validation actually. Changes have been reflected in the commit

feca04c6d0945fce0d24e7e8c317a65f323f1375 .

ASA-118 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/feca04c6d0945fce0d24e7e8c317a65f323f1375

ASA-119 Discussion On Non-Functional WAL Manager Initialization

Category Severity Location Status

Logical

Issue
Informational

core/orderbook/v2/persistence/manager.go (go-ethereum-6101af

6): 82~83; core/orderbook/v2/persistence/wal_manager.go (go-eth

ereum-6101af6): 67~69

Resolved

Description

The persistence subsystem claims to provide Write-Ahead Logging (WAL) durability, but the WAL manager is never actually

started. In manager.Start() , the call to p.walManager.Start() is commented out, meaning the WAL subsystem is never

initialized.

Recommendation

The audit team would like to confirm with the team if this is an incomplete implementation.

Alleviation

[Kaia, 11/12/2025]:

The relevant logics were removed from the codebase in the commit 5a258ef8f271f48f5d57b03f95e88f5ea3a9281f .

ASA-119 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/5a258ef8f271f48f5d57b03f95e88f5ea3a9281f

ASA-120 Discussion On Logging Errors Without Return

Category Severity Location Status

Design Issue,

Coding Issue
Informational

precompiles/ArbTokenIssuer.go (dex-core-188b108):

70~72, 92~94, 108~110, 142~145
Acknowledged

Description

In the Mint() and Burn() function, there is no return after the errors occur. The contract logs failures from the

TokenTransfer / TokenRegistered emitters but then continues execution.

Recommendation

The audit team would like to confirm with the team if this is an intended design.

Alleviation

[Kaia, 11/10/2025]:

The team acknowledged the issue and decided not to implement the recommended change in the current engagement.

ASA-120 ALPHA SEC. - AUDIT

ASA-121 Discussion On Order Cleanup After Trade Settlement Failure

Category Severity Location Status

Coding

Issue
Informational

core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-6

101af6): 263~269
Acknowledged

Description

When d.settleTrade(trade) fails, the processTradesAndCleanup() function proceeds to clean up orders associated

with that trade. This can result in passive orders being removed from cache or marked complete despite the trade not being

settled successfully. In some cases, these orders would otherwise have remained valid for future matches, leading to missing

trades and inconsistent orderbook states.

Recommendation

According to the comment // Continue processing other trades even if one fails , this seems to be an intended

design. The audit team would like to confirm with the team has considered the above scenario.

Alleviation

[Kaia, 11/24/2025]:

The team acknowledged the issue and decided not to implement the recommended change in the current engagement.

ASA-121 ALPHA SEC. - AUDIT

ASA-122 Duplicate OrderType Check In validate() Of

OrderContext And StopOrderContext

Category Severity Location Status

Code Optimization Informational core/types/tx_input.go (go-ethereum-6101af6): 220, 235 Resolved

Description

The validate() function validates the OrderContext and StopOrderContext , which performs the duplication check of

OrderType .

Recommendation

Recommend removing the second check for code readability and optimization.

Alleviation

[Kaia, 11/22/2025]:

Issue acknowledged. Changes have been reflected in the commit 60f60d5de678745a6434e4bdc7f1c056fab03cd7 .

ASA-122 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/60f60d5de678745a6434e4bdc7f1c056fab03cd7

ASA-123 Discussion On Latest Traded Price Updated As Orderbook's
Price

Category Severity Location Status

Design

Issue
Informational

core/orderbook/v2/engine/symbol_engine.go (go-ethereum-

6101af6): 388
Acknowledged

Description

During the order-matching process, the orderbook’s current price is updated based on the most recent executed trade.

Because this price may come from either a buy or a sell order, it can fluctuate significantly, especially when the orderbook

has low liquidity.

Recommendation

The audit team would like to understand if this is an intended design or the average of sell and buy price and a TWAP price

should be utilized.

Alleviation

[Kaia, 11/27/2025]:

The team acknowledged the issue and decided not to implement the recommended change in the current engagement.

ASA-123 ALPHA SEC. - AUDIT

ASA-124 Discussion On Incomplete Stage Logic

Category Severity Location Status

Coding

Issue
Informational

core/orderbook/v2/pipeline/locking_stage.go (go-ethereum-61

01af6): 13~34; core/orderbook/v2/pipeline/matching_stage.go

(go-ethereum-6101af6): 11~38; core/orderbook/v2/pipeline/qu

eue_update_stage.go (go-ethereum-6101af6): 11~51; core/or

derbook/v2/pipeline/settlement_stage.go (go-ethereum-6101af

6): 11~39

Acknowledged

Description

The current implementation of the MatchingStage/LockingStage/QueueUpdateStage/SettlementStage are not production-

ready and introduces several architectural and correctness concerns. While the stage structure is defined, the critical logic for

state processing is commented as TODO.

Recommendation

The audit team kindly requests further context to better understand the current implementation.

Alleviation

[Kaia, 11/21/2025]:

The team acknowledged the issue and decided not to implement the recommended change in the current engagement.

ASA-124 ALPHA SEC. - AUDIT

ASA-132 Missing Checks In Copy() Of StopOrder And TPSLOrder

Category Severity Location Status

Volatile

Code
Informational

core/orderbook/v2/types/conditional.go (go-ethereum-9586959):

140, 294
Resolved

Description

The StopOrder.Copy() unconditionally calls s.StopPrice.Clone() without nil check.

The TPSLOrder.Copy() blindly calls t.SLOrder.Copy() and t.SLTriggerPrice.Clone() without nil checks, and it

drops UserID .

Recommendation

Recommend adding nil checks and UserID to TPSLOrder .

Alleviation

[Kaia, 12/19/2025]:

Issue acknowledged. Changes have been reflected in the 81e1a4296eb1a13ee2e8f695b0d62ff55d6a8a4f .

ASA-132 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/81e1a4296eb1a13ee2e8f695b0d62ff55d6a8a4f

ASA-133 Missing Nil Check Of Trade In processTradesAndCleanup()

Category Severity Location Status

Volatile

Code
Informational

core/orderbook/v2/dispatcher/dispatcher.go (go-ethereum-95869

59): 285
Resolved

Description

Nil trade would lead to nil dereference via trade.IsBuyerMaker though it should not occur during normal operation.

Recommendation

Recommend adding the nil pointer check.

Alleviation

[Kaia, 12/19/2025]:

Issue acknowledged. Changes have been reflected in the 81e1a4296eb1a13ee2e8f695b0d62ff55d6a8a4f .

ASA-133 ALPHA SEC. - AUDIT

https://github.com/kaiachain/go-ethereum/commit/81e1a4296eb1a13ee2e8f695b0d62ff55d6a8a4f

ASA-67 Discussion On Any Token That Is Pre-Registered

Category Severity Location Status

Logical Issue,

Inconsistency
Informational

precompiles/ArbTokenIssuer.go (dex-core-188b

108): 96~101
Acknowledged

Description

ArbTokenIssuer.Mint() function logs “L2Contract mapping added to existing token” but never verifies that a mapping

exists; it immediately adds balances for that tokenId .

Recommendation

The audit team would like to confirm with the team whether this is the intended design.

Alleviation

[Kaia, 12/02/2025]:

Issue acknowledged. I will fix the issue in the future, which will not be included in this audit engagement.

ASA-67 ALPHA SEC. - AUDIT

APPENDIX ALPHA SEC. - AUDIT

Audit Scope

kaiachain/go-ethereum

core/orderbook/v2/balance/manager.go

core/orderbook/v2/book/orderbook.go

core/orderbook/v2/dispatcher/dispatcher.go

core/orderbook/v2/engine/symbol_engine.go

core/orderbook/v2/matching/price_time_priority.go

core/orderbook/v2/pipeline/locking_stage.go

core/orderbook/v2/pipeline/matching_stage.go

core/orderbook/v2/pipeline/queue_update_stage.go

core/orderbook/v2/pipeline/settlement_stage.go

core/orderbook/v2/queue/buy_queue.go

core/orderbook/v2/queue/sell_queue.go

core/orderbook/v2/tpsl/oco_controller.go

core/orderbook/v2/tpsl/trigger_manager.go

core/orderbook/v2/types/conditional.go

core/orderbook/v2/persistence/delta_writer.go

core/orderbook/v2/persistence/manager.go

core/types/tx_input.go

core/orderbook/v2/balance/settlement.go

core/orderbook/v2/conditional/manager.go

APPENDIX ALPHA SEC. - AUDIT

kaiachain/go-ethereum

core/orderbook/v2/persistence/manager.go

core/orderbook/v2/persistence/wal_manager.go

core/orderbook/v2/tpsl/interfaces.go

core/orderbook/v2/types/order.go

core/orderbook/v2/types/trade.go

core/types/account.go

core/types/session.go

core/types/token_balance.go

core/types/tx_input.go

core/orderbook/v2/engine/symbol_engine.go

core/orderbook/v2/book/orderbook.go

core/orderbook/v2/conditional/manager.go

core/orderbook/v2/dispatcher/dispatcher.go

core/orderbook/v2/types/conditional.go

core/orderbook/v2/interfaces/conditional.go

core/orderbook/v2/interfaces/core.go

core/orderbook/v2/interfaces/dispatcher.go

core/orderbook/v2/interfaces/market.go

core/orderbook/v2/interfaces/request.go

core/orderbook/v2/interfaces/response.go

core/orderbook/v2/metrics/metrics.go

core/orderbook/v2/system/system.go

APPENDIX ALPHA SEC. - AUDIT

kaiachain/go-ethereum

core/orderbook/v2/balance/scaled_math.go

core/orderbook/v2/persistence/recovery.go

core/orderbook/v2/persistence/serialization.go

core/orderbook/v2/persistence/snapshot_manager.go

core/orderbook/v2/pipeline/builder.go

core/orderbook/v2/pipeline/conditional_stage.go

core/orderbook/v2/pipeline/context.go

core/orderbook/v2/pipeline/event_generation_stage.go

core/orderbook/v2/pipeline/integration_example.go

core/orderbook/v2/pipeline/management_pipeline.go

core/orderbook/v2/pipeline/pipeline.go

core/orderbook/v2/pipeline/trading_pipeline.go

core/orderbook/v2/pipeline/validation_stage.go

core/orderbook/v2/tpsl/activation_rule.go

core/orderbook/v2/tpsl/triggers.go

core/orderbook/v2/types/balance.go

core/orderbook/v2/types/common.go

core/orderbook/v2/types/config.go

core/orderbook/v2/types/depth.go

core/orderbook/v2/types/errors.go

core/orderbook/v2/types/fee_retriever.go

core/orderbook/v2/types/market_rules.go

APPENDIX ALPHA SEC. - AUDIT

kaiachain/go-ethereum

core/orderbook/v2/types/price_helpers.go

core/orderbook/v2/types/request.go

core/orderbook/v2/types/snapshot.go

core/orderbook/v2/types/statedb.go

core/orderbook/v2/types/symbol.go

core/orderbook/v2/interfaces/conditional.go

core/orderbook/v2/interfaces/core.go

core/orderbook/v2/interfaces/dispatcher.go

core/orderbook/v2/interfaces/market.go

core/orderbook/v2/interfaces/request.go

core/orderbook/v2/interfaces/response.go

core/orderbook/v2/metrics/metrics.go

core/orderbook/v2/system/system.go

core/orderbook/v2/balance/manager.go

core/orderbook/v2/balance/scaled_math.go

core/orderbook/v2/balance/settlement.go

core/orderbook/v2/book/orderbook.go

core/orderbook/v2/conditional/manager.go

core/orderbook/v2/dispatcher/dispatcher.go

core/orderbook/v2/matching/price_time_priority.go

core/orderbook/v2/persistence/recovery.go

core/orderbook/v2/persistence/snapshot_manager.go

APPENDIX ALPHA SEC. - AUDIT

kaiachain/go-ethereum

core/orderbook/v2/pipeline/builder.go

core/orderbook/v2/pipeline/conditional_stage.go

core/orderbook/v2/pipeline/context.go

core/orderbook/v2/pipeline/event_generation_stage.go

core/orderbook/v2/pipeline/integration_example.go

core/orderbook/v2/pipeline/locking_stage.go

core/orderbook/v2/pipeline/management_pipeline.go

core/orderbook/v2/pipeline/matching_stage.go

core/orderbook/v2/pipeline/pipeline.go

core/orderbook/v2/pipeline/queue_update_stage.go

core/orderbook/v2/pipeline/settlement_stage.go

core/orderbook/v2/pipeline/trading_pipeline.go

core/orderbook/v2/pipeline/validation_stage.go

core/orderbook/v2/queue/buy_queue.go

core/orderbook/v2/queue/sell_queue.go

core/orderbook/v2/tpsl/activation_rule.go

core/orderbook/v2/tpsl/interfaces.go

core/orderbook/v2/tpsl/oco_controller.go

core/orderbook/v2/tpsl/trigger_manager.go

core/orderbook/v2/tpsl/triggers.go

core/orderbook/v2/types/balance.go

core/orderbook/v2/types/common.go

APPENDIX ALPHA SEC. - AUDIT

kaiachain/go-ethereum

core/orderbook/v2/types/conditional.go

core/orderbook/v2/types/config.go

core/orderbook/v2/types/depth.go

core/orderbook/v2/types/errors.go

core/orderbook/v2/types/fee_retriever.go

core/orderbook/v2/types/market_rules.go

core/orderbook/v2/types/order.go

core/orderbook/v2/types/price_helpers.go

core/orderbook/v2/types/request.go

core/orderbook/v2/types/snapshot.go

core/orderbook/v2/types/statedb.go

core/orderbook/v2/types/symbol.go

core/orderbook/v2/types/trade.go

core/types/account.go

core/types/token_balance.go

core/types/session.go

core/types/tx_input.go

core/orderbook/v2/interfaces/conditional.go

core/orderbook/v2/interfaces/core.go

core/orderbook/v2/interfaces/dispatcher.go

core/orderbook/v2/interfaces/market.go

core/orderbook/v2/interfaces/request.go

APPENDIX ALPHA SEC. - AUDIT

kaiachain/go-ethereum

core/orderbook/v2/interfaces/response.go

core/orderbook/v2/metrics/metrics.go

core/orderbook/v2/system/system.go

core/orderbook/v2/balance/manager.go

core/orderbook/v2/balance/scaled_math.go

core/orderbook/v2/balance/settlement.go

core/orderbook/v2/book/orderbook.go

core/orderbook/v2/conditional/manager.go

core/orderbook/v2/dispatcher/dispatcher.go

core/orderbook/v2/engine/symbol_engine.go

core/orderbook/v2/matching/price_time_priority.go

core/orderbook/v2/persistence/delta_writer.go

core/orderbook/v2/persistence/manager.go

core/orderbook/v2/persistence/recovery.go

core/orderbook/v2/persistence/snapshot_manager.go

core/orderbook/v2/pipeline/builder.go

core/orderbook/v2/pipeline/conditional_stage.go

core/orderbook/v2/pipeline/context.go

core/orderbook/v2/pipeline/event_generation_stage.go

core/orderbook/v2/pipeline/locking_stage.go

core/orderbook/v2/pipeline/management_pipeline.go

core/orderbook/v2/pipeline/matching_stage.go

APPENDIX ALPHA SEC. - AUDIT

kaiachain/go-ethereum

core/orderbook/v2/pipeline/pipeline.go

core/orderbook/v2/pipeline/queue_update_stage.go

core/orderbook/v2/pipeline/settlement_stage.go

core/orderbook/v2/pipeline/trading_pipeline.go

core/orderbook/v2/pipeline/validation_stage.go

core/orderbook/v2/queue/buy_queue.go

core/orderbook/v2/queue/sell_queue.go

core/orderbook/v2/tpsl/activation_rule.go

core/orderbook/v2/tpsl/interfaces.go

core/orderbook/v2/tpsl/oco_controller.go

core/orderbook/v2/tpsl/trigger_manager.go

core/orderbook/v2/tpsl/triggers.go

core/orderbook/v2/types/balance.go

core/orderbook/v2/types/common.go

core/orderbook/v2/types/conditional.go

core/orderbook/v2/types/config.go

core/orderbook/v2/types/depth.go

core/orderbook/v2/types/errors.go

core/orderbook/v2/types/fee_retriever.go

core/orderbook/v2/types/market_rules.go

core/orderbook/v2/types/order.go

core/orderbook/v2/types/price_helpers.go

APPENDIX ALPHA SEC. - AUDIT

kaiachain/go-ethereum

core/orderbook/v2/types/request.go

core/orderbook/v2/types/snapshot.go

core/orderbook/v2/types/statedb.go

core/orderbook/v2/types/symbol.go

core/orderbook/v2/types/trade.go

core/types/account.go

core/types/token_balance.go

core/types/session.go

core/types/tx_input.go

core/orderbook/v2/interfaces/conditional.go

core/orderbook/v2/interfaces/core.go

core/orderbook/v2/interfaces/dispatcher.go

core/orderbook/v2/interfaces/market.go

core/orderbook/v2/interfaces/request.go

core/orderbook/v2/interfaces/response.go

core/orderbook/v2/metrics/metrics.go

core/orderbook/v2/system/system.go

core/orderbook/v2/balance/manager.go

core/orderbook/v2/balance/scaled_math.go

core/orderbook/v2/balance/settlement.go

core/orderbook/v2/engine/symbol_engine.go

core/orderbook/v2/matching/price_time_priority.go

APPENDIX ALPHA SEC. - AUDIT

kaiachain/go-ethereum

core/orderbook/v2/persistence/delta_writer.go

core/orderbook/v2/persistence/manager.go

core/orderbook/v2/persistence/recovery.go

core/orderbook/v2/persistence/snapshot_manager.go

core/orderbook/v2/pipeline/builder.go

core/orderbook/v2/pipeline/conditional_stage.go

core/orderbook/v2/pipeline/context.go

core/orderbook/v2/pipeline/event_generation_stage.go

core/orderbook/v2/pipeline/management_pipeline.go

core/orderbook/v2/pipeline/matching_stage.go

core/orderbook/v2/pipeline/pipeline.go

core/orderbook/v2/pipeline/queue_update_stage.go

core/orderbook/v2/pipeline/settlement_stage.go

core/orderbook/v2/pipeline/trading_pipeline.go

core/orderbook/v2/pipeline/validation_stage.go

core/orderbook/v2/pipeline/locking_stage.go

core/orderbook/v2/queue/buy_queue.go

core/orderbook/v2/queue/sell_queue.go

core/orderbook/v2/tpsl/activation_rule.go

core/orderbook/v2/tpsl/interfaces.go

core/orderbook/v2/tpsl/oco_controller.go

core/orderbook/v2/tpsl/trigger_manager.go

APPENDIX ALPHA SEC. - AUDIT

kaiachain/go-ethereum

core/orderbook/v2/tpsl/triggers.go

core/orderbook/v2/types/balance.go

core/orderbook/v2/types/common.go

core/orderbook/v2/types/config.go

core/orderbook/v2/types/depth.go

core/orderbook/v2/types/errors.go

core/orderbook/v2/types/fee_retriever.go

core/orderbook/v2/types/market_rules.go

core/orderbook/v2/types/order.go

core/orderbook/v2/types/price_helpers.go

core/orderbook/v2/types/request.go

core/orderbook/v2/types/snapshot.go

core/orderbook/v2/types/statedb.go

core/orderbook/v2/types/symbol.go

core/orderbook/v2/types/trade.go

core/types/account.go

core/types/token_balance.go

core/types/session.go

kaiachain/kaia-orderbook-dex-core

precompiles/ArbTokenIssuer.go

execution/gethexec/time_nonce.go

APPENDIX ALPHA SEC. - AUDIT

kaiachain/kaia-orderbook-dex-token-bridge-contracts

contracts/tokenbridge/libraries/L2GatewayToken.sol

Finding Categories

Categories Description

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

improved to make the code more understandable and maintainable.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Denial of

Service

Denial of Service findings indicate that an attacker may prevent the program from operating correctly

or responding to legitimate requests.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

APPENDIX ALPHA SEC. - AUDIT

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER ALPHA SEC. - AUDIT

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER ALPHA SEC. - AUDIT

Elevating Your Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is

the largest blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Alpha Sec. - audit Security Assessment CertiK Assessed on Dec 19th, 2025 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

